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A B S T R A C T   

Eutrophication substantially influences the community structure of aquatic organisms and has become a major 
threat to biodiversity. However, whether eutrophication is linked to homogenization of microbial communities 
and the possible underlying mechanisms are poorly understood. Here, we studied bacterial and fungal com
munities from water and sediments of 40 shallow lakes in the Yangtze-Huaihe River basin, a representative area 
characterized by intensifying eutrophication in China, and further examined the beta diversity patterns and 
underlying mechanisms under eutrophication conditions. Our results indicate that eutrophication generally 
caused biotic homogenization of bacterial and fungal communities in both habitats showing decreased com
munity variations for the sites with a higher trophic state index (TSI). In the two habitats, community dissim
ilarities were positively correlated with TSI changes for both taxonomic groups, while the local contribution to 
beta diversity (LCBD) remarkably declined with increasing TSI for the fungal community. These phenomena 
were consistent with the pivotal importance of the TSI in statistically accounting for beta diversity of bacterial 
and fungal communities in both habitats. In addition, we found that physicochemical factors such as water 
temperature and pH were also important for bacterial and fungal communities in water, while heavy metal el
ements were important for the communities in sediments. Interestingly, generalist species, rather than specialist 
species, were revealed to more dominantly affect the variations in beta diversity along the trophic gradient, 
which were quantified by Bray-Curtis dissimilarity and LCBD. Collectively, our findings reveal the importance of 
generalist species in contributing to the change of beta diversity of microbial communities along trophic gra
dients, which have profound implications for a comprehensive understanding of the effects of eutrophication on 
microbial community.   

1. Introduction 

Eutrophication has become a global aquatic environmental issue, 
often resulting in the swamping of lakes, deterioration of water quality, 
loss of diversity and changes of ecosystem structure and function 
(Alexander et al., 2017; Ansari et al., 2010). One of the main conse
quences caused by eutrophication is biotic homogenization (McKinney 
and Lockwood, 1999), a complex process in which the compositional 

similarity between communities increases (Otto et al., 2020), as has 
previously been observed in macroorganisms such as fish (Menezes 
et al., 2015), macrophytes (Salgado et al., 2018), macroinvertebrates 
(Donohue et al., 2009) and zooplankton (Liu et al., 2020b). Theoreti
cally, the occurrence of biotic homogenization could be simply sum
marized as the following three aspects: (1) extinction of native species, 
(2) invasion of widespread nonnative species, and (3) range expansion 
of native generalists (McKinney and Lockwood, 2001; Olden et al., 
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2004). For example, in the case of fish, it has been reported that 
worldwide freshwater fish homogenization is strongly driven by the 
species translocated within a realm and by only a few nonnative gen
eralists whereas most nonnative species contribute to the differentiation 
effect (Toussaint et al., 2016). Similarly, the increased community 
similarity of aquatic macrophytes may be caused by invasive species via 
their own presence in multiple sites and influence on the composition of 
native species (Muthukrishnan et al., 2020). However, current un
derstandings of homogenization of aquatic biological communities, 
particularly microbes, remain elusive. 

Biotic homogenization can be quantified by beta diversity, which can 
be calculated using the dissimilarity indices such as Bray-Curtis and 
Jaccard dissimilarity (Bray and Curtis, 1957; Jaccard, 1900) and the 
ecological uniqueness of local site (Legendre and De Caceres, 2013). The 
selection of indicators is important for quantifying biotic homogeniza
tion because they can capture different aspects of information about the 
community (Petsch, 2016). The most straightforward and commonly 
used beta-diversity indicator for quantifying biotic homogenization is 
the dissimilarity index, among which the Bray-Curtis and Jaccard 
dissimilarity are used most frequently in homogenization studies 
(Baeten et al., 2012). Jaccard’s dissimilarity index is used most 
frequently for occurrence data, while the Bray–Curtis dissimilarity index 
is appropriate for the data with abundance information (Olden and 
Rooney, 2006). Biotic homogenization can be measured by comparing 
the dissimilarity among biological communities at two distinct times or 
the average pairwise dissimilarity between sites in different environ
mental states, and the degree of homogenization can be evaluated by 
comparing the change rate of the dissimilarity index with temporal or 
spatial distance (Petsch, 2016). In addition, as another beta diversity 
that is based on each local site, local contributions to beta diversity 
(LCBD) are proposed to quantify the community uniqueness of each site; 
a lower LCBD value indicates a site with a smaller difference in species 
composition (Legendre and De Caceres, 2013). The LCBD can explain 
the site from a biological conservation perspective, and large LCBD 
values represent the sites of high conservation values (Legendre, 2014). 
Thus, although rarely used to quantify biotic homogenization in litera
ture, we proposed that the LCBD could be a complementary metric to 
pairwise similarity to help understand biotic homogenization and pro
vide a theoretical reference for ecological conservation. 

Here, we studied bacterial and fungal communities from water and 
sediments of 40 shallow lakes in the Yangtze-Huaihe River basin, China, 
and investigated the patterns of beta diversity quantified by the pairwise 
similarity and LCBD along the trophic gradient. This basin has the most 
abundant water sources in China, with the highest density of lakes and 
number of freshwater lakes. It is an area with a relatively high level of 
urbanization and agricultural development (Li et al., 2019). Due to 
extensive human activities and accelerated urbanization, it has become 
a representative area characterized by increasing eutrophication (Liu 
et al., 2020a). Our main aims were to determine the following questions: 
(1) Are there general patterns of beta diversity along the trophic 
gradient for bacteria and fungi in water and sediments? If so, do these 
patterns prove the existence of biological homogenization? (2) What are 
the main environmental drivers of microbial community compositions 
considering eutrophication, heavy metal pollution or other physico
chemical factors? (3) What kind of species, that is, specialists or gen
eralists, contribute more to beta diversity and explain the observed 
biological homogenization? 

2. Materials and methods 

2.1. Sampling 

From August to September 2019, we collected paired samples from 
water and surface sediments at 98 sites in 40 lakes in the Yangtze- 
Huaihe River basin, China (28.55-33.29◦N, 113.00-119.80◦E; Fig. 1A). 
We selected 1-4 sampling sites according to the area of each lake and 

avoided the sites with obvious human disturbance such as dredging, 
hydrological engineering and cage aquaculture. At each site, the water 
from the upper 50-cm lake surface layer was collected with the Schindler 
sampler and then the surface sediment (0-1 cm) was collected with a 6- 
cm diameter gravity core. It should be noted that surface sediments 
could not be retrieved with our sampling cores in several sites, and thus 
we finally obtained 98 and 80 samples for water and sediment habitats, 
respectively. In situ, latitude and longitude were recorded using a GPS 
device. We measured environmental variables using a portable multi
parameter water quality analyzer (ProPlus, YSI, USA), including water 
depth (WD), water conductivity (SPC), pH, transparency (SD), turbidity 
(TUB), dissolved oxygen (DO) and water temperature (WT). After 
thorough mixing, all samples were placed in sealed containers and 
stored at -20◦C before further analysis including DNA extraction and 
chemical analyses. 

For the water sample analysis, we used the unfiltered water to 
analyze the total nitrogen (TN) and total phosphorus (TP) and the 
filtered water with a 0.7 μm GFF membrane to measure the dissolved 
total nitrogen (DTN), ammonium nitrogen (NH4

+), nitrate nitrogen 
(NO3

− ), nitrite nitrogen (NO2
− ), dissolved total phosphorus (DTP) and 

dissolved phosphate ion (PO4
3− ). We measured main ions such as K+, 

Na+, Ca2+, Mg2+, Cl− and SO4
2− using ion chromatography (Dionex DX- 

600, USA). In addition, chlorophyll a (Chl-a) was extracted by acetone 
solution and quantified by spectrophotometry (Steinman et al., 2017). 

For surface sediments, 0.7 g freeze-dried sediment was mixed with 
30 mL of deionized water, followed by ultrasonic treatment for 2 h and 
centrifugation at 4,000 rpm for 40 min. The centrifuged supernatant was 
filtered through a 0.45 μm membrane to obtain the sediment extract. 
The ammonium nitrogen (NH4

+), nitrate nitrogen (NO3
− ), nitrite ni

trogen (NO2
− ), total phosphorus (TP), dissolved phosphate ion (PO4

3− ) 
and dissolved total organic carbon (DOC) of the sediment extract were 
measured. The conductivity (SPC) and pH were obtained by measuring 
the liquid obtained by mixing 0.3 g freeze-dried sample with 6 ml of 
deionized water. In addition, we used ICP-AES to measure metal ele
ments, including Al, Ba, Be, K, Mg, Mn, Na, Ca, Fe, Sr, Ti, V, Zn, Cr, Co, 
Ni, Cu, As, Mo, Cd, Sb, Tl and Pb. 

To evaluate the trophic status of each site, we calculated a trophic 
state index (TSI) based on the concentrations of TN, TP, Chl-a and SD in 
the water environment (Carlson, 1977; Zhang et al., 2018b). Specif
ically, the calculation of the TSI was as follows: 

TSI =0.326 * TSI(Chl − a) + 0.219 * TSI(TN) + 0.230 * TSI(TP)
+ 0.225 * TSI(SD)

(1)  

TSI(Chl − a) = 10 * [2.5+ 1.086 * ln(Chl − a)] (2)  

TSI(TP) = 10 * [9.436+ 1.624 * ln(TP)] (3)  

TSI(TN) = 10 * [5.453+ 1.694 * ln(TN)] (4)  

TSI(SD) = 10 * [5.118 − 1.94 * ln(SD)] (5)  

where TSI(Chl-a), TSI(TN), TSI(TP), and TSI(SD) are the trophic state 
index in relation to Chl-a (mg/L), TN (mg/L), TP (mg/L), and SD (m), 
respectively. Five trophic levels were defined: oligotrophic (TSI < 30), 
mesotrophic (30 ≤ TSI ≤50), slightly eutrophic (50 < TSI ≤ 60), 
moderately eutrophic (60 < TSI ≤70) and highly eutrophic (TSI >70) 
(Huo et al., 2013). 

For detailed information on the environmental variables of the four 
trophic groups, see Supporting Information Tables S1 and S2 for water 
and sediments, respectively. 

2.2. Sequence analyses 

We extracted the bacterial and fungal DNA from the filtered water 
and sediment samples using a FastDNA spin kit for soil (MoBio 
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Fig. 1. Sample information. (a) Distribution of the 40 shallow lakes in the middle and lower reaches of the Yangtze and Huaihe Rivers, China. A total of 98 water 
samples and 80 sediment samples were collected. (b) Circular visualization of the dominant bacterial and fungal phyla in four trophic types for water and sediment 
samples. The inner circular diagram shows the relative abundance of different bacterial and fungal phyla in four sample types. Only the dominant phylum with the 
top 10 most abundant phyla is shown. The width of different colored ribbons represents relative abundance of the corresponding phyla in each sample type and the 
width is directly proportional to their relative abundance. WB: bacteria in water samples; SB: bacteria in sediment samples; WF: fungi in water samples; SF: fungi in 
sediment samples. 
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Laboratories, Inc., Carlsbad, CA, USA) according to the manufacturer’s 
instructions. For bacteria, the V4 region of 16S rRNA genes was ampli
fied in triplicate by PCR with primers 515F (5′- 
GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGAC
TACHVGGGTWTCTAAT-3′). For fungi, the ITS2 region was amplified 
using primers gITS7F (5′- GTGARTCATCGARTCTTTG-3′) and ITS4R (5′- 
TCCTCCGCTTATTGATATGC-3′). The PCR products of triplicate re
actions were combined and quantified with PicoGreen (Eugene, OR, 
USA) and pooled in equal molar amounts to maximize the even- 
sequencing efforts for all samples. The pooled mixture was purified 
with a QIAquick Gel Extraction Kit (QIAGEN Science, Germantown, MD, 
USA) and requantified with PicoGreen. Sample libraries for sequencing 
were prepared according to the MiSeq Reagent Kit Preparation Guide 
(Illumina, San Diego, CA, USA) and sequenced on the Illumina MiSeq 
platform. 

For bacteria, the sequences were processed using the script ‘pick_
open_reference_otus.py’ in QIIME v1.9.1 (Caporaso et al., 2010b). Se
quences longer than 450 bp were denoised with the Denoiser algorithm 
(Reeder and Knight, 2010) and clustered into operational taxonomic 
units (OTUs) at a 97% similarity level with the seed-based UCLUST al
gorithm (Edgar, 2010). Representative sequences were extracted from 
each OTU, and a sequence alignment was performed with PyNAST 
(Caporaso et al., 2010a), and a taxonomy assignment was performed 
using the Greengenes database (DeSantis et al., 2006). For fungi, the 
clustering of OTUs was the same as for bacteria whereas taxonomic 
identification of each OTU was determined using the UNITE database 
(Nilsson et al., 2019). Finally, the bacterial and fungal sequences were 
both rarefied at the minimum sequence abundance to ensure that the 
biodiversity was not influenced by variation in abundance or sampling 
intensity. 

2.3. Statistical analyses 

First, we performed Kruskal–Wallis and Wilcoxon tests to examine 
the significant differences in each environmental variable for water or 
sediment samples across different trophic groups. In addition, the linear 
and quadratic models were used to explore the relationships between 
the TSI and nutrient-related environmental variables in water (TN, DTN, 
NH4

+, NO3
− , NO2

− , TP, DTP, PO4
3− , Chl-a and SD) and sediment (NH4

+, 
NO3

− , NO2
− , TP and PO4

3− ) environments, and the better models were 
selected based on lower values of the Akaike information criterion (AIC) 
(Yamaoka et al., 1978). To analyze the bacterial and fungal community 
composition, we visualized the relative abundances of the top 10 bac
terial and fungal phyla in four sample types and explored the relation
ships between the TSI and relative abundance of these phyla with linear 
or quadratic models based on the lower value of AIC (Yamaoka et al., 
1978). 

Second, we explored the differences between different trophic 
groups of bacterial and fungal community structures in water and 
sediment samples by nonmetric multidimensional scaling (NMDS) based 
on the Bray-Curtis similarity. We tested for homogeneity of dispersion 
using the permutational analysis of multivariate dispersions (PERM
DISP) (Anderson et al., 2006), which assessed the within-group differ
ences using the average value of the individual observation distances to 
the centroid of the own group. In addition, we calculated the mean 
values of beta diversity for each trophic group based on the Bray-Curtis 
similarity (Anderson et al., 2006) and compared them by Kruskal–Wallis 
and Wilcoxon tests. We also used Kruskal–Wallis and Wilcoxon tests to 
determine the variation in alpha diversity across different trophic 
groups, namely, the species richness, Pielou’s evenness (Pielou, 1966), 
Shannon (Shannon, 1948) and Chao1 (Chao, 1984) indices. 

Third, to explore the patterns of beta diversity, we calculated the 
Bray-Curtis dissimilarity among different sites and LCBD for each site 
(Legendre and De Caceres, 2013). Mantel tests were used to determine 
the relationships between the TSI change and Bray-Curtis dissimilarity 
matrices with Pearson’s correlation and 999 permutations. The turnover 

rate of communities was calculated as the slope of the ordinary 
least-squares regression line fitted to the relationship between the TSI 
distance and community dissimilarity. Additionally, we explored the 
relationships between the TSI distance and Bray-Curtis dissimilarity for 
each trophic group using Mantel tests and compared the turnover rate of 
communities for each trophic group. Linear or quadratic models were 
applied to analyze the relationships between LCBD and TSI and the most 
appropriate models were selected based on AIC (Yamaoka et al., 1978). 

Fourth, to analyze the important drivers of beta diversity, we used 
distance-based redundancy analysis (db-RDA) (Legendre and Anderson, 
1999), multiple regression on distance matrices (MRM) (Legendre et al., 
1994) and multiple linear regression (MLR). Before these analyses, we 
excluded the variables with Pearson’s correlation coefficients larger 
than 0.7 (Leathwick et al., 2006). RDA was used to select the important 
drivers for community composition with Hellinger-transformation 
(Legendre and Gallagher, 2001). MRM analyses were conducted to 
quantify the relative importance of the environmental variables on the 
Bray-Curtis distance for bacteria and fungi. All environmental variables 
were z-score standardized (i.e., mean = 0, SD = 1) before the MRM 
analyses, as these standardizations can make the importance of all 
environmental variables comparable. We chose the final models using 
forward selection of explanatory variables based on AIC that best 
accounted for variation in beta diversity and used the partial regression 
coefficients of these variables as the measure of the relative importance 
of variables on response variables. Furthermore, MLR was employed to 
examine environmental drivers of LCBD. For the MLR analyses, the se
lection method of the final models was similar to MRM, and the partial 
regression coefficients of each variable were used to compare the effect 
of each variable on the LCBD. 

Finally, to test to what degree the homogenization is affected by 
generalist and specialist species, we estimated each species’ niche 
breadth along the TSI gradients (that is, TSI range size) by the absolute 
difference between the maximum and minimum of species TSI values 
across all samples and then gradually removed the species with large or 
small niche breadths from the observed communities (i.e., TSI range 
size), respectively (Wang et al., 2020). For each taxonomic group in both 
water and sediments, we classified the species into 20 range-size cate
gories according to their TSI range size. For example, for generalist 
species, we removed the species starting from the category of the largest 
TSI range size for the observed community and then recalculated the 
Bray-Curtis dissimilarity and LCBD, respectively. We used the 
Bray-Curtis dissimilarity as the response variable for all subcommunities 
and assessed the effects of TSI on beta diversity in each scenario by 
linear models and MRM analyses. The slopes in the linear model and 
partial regression coefficients of TSI in the MRM model were used to 
quantify the effects of removal of generalist species on the degrees of 
biotic homogenization. Additionally, we selected the LCBD as response 
variables, and linear models and MLR analyses were used to determine 
the influences of the TSI on beta diversity for all sub-communities. The 
effects of generalist species removal on the degrees of biotic homoge
nization can be compared by the slopes in the linear model and partial 
regression coefficients of TSI in the MLR model. We used the novel 
approach to explore the relative importance of generalists and special
ists on biotic homogenization, which has no specific bias in thresholds in 
relative abundance and/or species occurrence for selecting or grouping 
species. To confirm the reliability of our results, we also classified the 
species into 20 categories based on Levins’ niche breadth (B) (Levins, 
1968), a traditional niche breadth index, and then performed the same 
analyses. Furthermore, we divided all species into generalist, neutral 
taxa and specialist groups according to neutral model (Sloan et al., 
2006) and explored the relationships for each group between the TSI 
distance and Bray-Curtis dissimilarity and between LCBD and TSI using 
Mantel tests and linear models, respectively. More detailed information 
about traditional statistical analyses based on Levins’ niche breadth 
(Supplementary Materials and Methods) and the corresponding results 
(Figs. S1–S4) are provided in supplementary materials. Moreover, we 
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calculated the species contribution of beta diversity (SCBD) to verify the 
importance of generalist and specialist species to biotic homogenization 
(Legendre and De Caceres, 2013). We quantified the relative contribu
tions of deterministic processes and stochastic processes by using null 
model analysis based on the Raup-Crick metric of beta diversity (βRC) 
(Chase et al., 2011) for all sub-communities. We were unable to 
distinguish detailed ecological processes combining both phylogenetic 
beta diversity and βRC (Ning et al., 2020; Stegen et al., 2015) because the 
ITS-based fungal phylogenetic information is not reliable (Schoch et al., 
2012). 

All of the above statistical analyses were conducted with stats V3.6.0, 
base V3.6.0, MASS V7.3-54 (Ripley et al., 2013), circlize V0.4.13 (Gu 
et al., 2014), vegan V2.5-7 (Oksanen et al., 2013) and adespatial 0.3-14 
() in R 3.6.0. 

3. Results 

The 98 sampling sites had a mean TSI of 60.13, ranging from 38.62 to 
76.89, and most sites were eutrophic according to a TSI threshold larger 
than 50 (Zhang et al., 2018b). We categorized the sites into four trophic 
groups based on the calculated TSI: mesotrophic (30 ≤ TSI ≤ 50, 19 
sites), slightly eutrophic (50 < TSI ≤ 60, 24 sites), moderately eutrophic 
(60 < TSI ≤ 70, 42 sites), and highly eutrophic (TSI > 70, 13 sites). We 
found that the environmental variables related to eutrophication or 
nutrient levels generally showed significant relationships with TSI in 
both water and sediment habitats (Fig. S5; P < 0.05). For instance, 
chlorophyll a, total nitrogen and dissolved total nitrogen in water tended 
to increase with increasing TSI, while the transparency decreased. The 
phosphorus content in water (total phosphorus, dissolved total phos
phorus, and dissolved PO4

3− ) and sediments (total phosphorus, and 

Fig. 2. Beta diversity patterns along the trophic gradient. (a) Nonmetric multidimensional scaling (NMDS) based on the Bray-Curtis dissimilarity matrices, showing 
the differences in community composition among the four lake trophic groups. (b) Pairwise relationships between the Bray-Curtis dissimilarity and TSI distance based 
on the Euclidean distance for observed communities. Statistically significant relationships (P ≤ 0.05) indicated by Mantel tests are illustrated by solid lines, while 
dashed lines indicate non-significant relationships (P > 0.05). (c) Linear regression relationships between the LCBD and TSI for observed communities. Statistically 
significant relationships are shown with solid lines (P ≤ 0.05), while dashed lines show non-significant relationships (P > 0.05). 
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dissolved PO4
3− ) exhibited consistent U-shaped patterns along the TSI 

gradient, reaching a minimum at TSI values between 45 and 60. How
ever, the dissolved NH4

+, NO3
− , and NO2

− showed non-significant 
patterns for both habitats (Fig. S5; P > 0.05). Furthermore, the above 
variables of both habitats generally supported the classification of tro
phic groups by showing significant differences among the four groups 
(Tables S1 and S2; P < 0.05). 

The main phyla of the two taxonomic groups also showed predictable 

patterns along the TSI gradient. For bacteria, the most abundant phyla in 
water were Proteobacteria and Actinobacteria, followed by Bacteroidetes, 
while Proteobacteria was most abundant in sediments, followed by 
Chloroflexi (Fig. 1B). In water, the relative abundances of Chlamydiae 
and Planctomycetes increased with TSI (Fig. S6; P < 0.05); in sediments, 
the relative abundance of Acidobacteria and Actinobacteria in sediments 
decreased with increasing TSI, while that of Bacteroidetes increased to
ward high TSI (Fig. S6; P < 0.05). For fungi, the most abundant phylum 

Fig. 3. Environmental factors affecting the beta diversity, identified with distance-based redundancy analysis (a), multiple regression on distance matrices (b) and 
multiple linear regression (c). (a) Arrows show the significant environmental variables after forward selection. The point colors represent different trophic groups. (b) 
The Bray-Curtis dissimilarity was calculated as a response variable and forward selection was used to determine the final model. The partial regression coefficients 
show the relative importance of each variable for the Bray-Curtis dissimilarity. (c) We calculated the LCBD as a response variable and then used forward selection to 
determine the final model. The partial regression coefficients show the relative importance of each variable for LCBD. Significance levels: *, P ≤ 0.05; **, P ≤ 0.01; 
***, P ≤ 0.001. 
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in both habitats was Ascomycota, followed by Basidiomycota in water and 
by Rozellomycota and Basidiomycota in sediments (Fig. 1B). The relative 
abundances of Ascomycota, Basidiomycota and Chytridiomycota in sedi
ments and Ascomycota in water decreased with increasing TSI (Fig. S6; P 
< 0.05). 

Along the trophic gradient, we observed taxonomic homogenization 
for bacteria and fungi. Bacterial and fungal communities in water and 
sediments generally became more clustered in highly eutrophic lakes, 
measured by the distance to group centroid (Fig. 2A; Table S3). Such a 
phenomenon can be supported by the average Bray-Curtis dissimilarity 
for each trophic group, which showed lower values in highly eutrophic 
lakes than in lakes with lower trophic status (Table S4). Moreover, the 
average richness increased toward higher trophic groups for bacteria 
and fungi in water but not in sediments (Table S5). 

The taxonomic homogenizations were also confirmed by quantifying 
the changes in beta diversity indicated by the LCBD and Bray-Curtis 
dissimilarity along TSI. For bacteria or fungi in both habitats, there 
were consistent environmental distance-decay relationships along TSI 
changes (Fig. 2B; P < 0.05), and the communities in mesotrophic lakes 
showed the fastest turnover rates with the highest slopes (Fig. S7). In 
both habitats, LCBD showed significantly negative correlations with the 
TSI for fungi (Fig. 2C, P < 0.01) but non-significant correlations for 
bacteria (Fig. 2C, P > 0.05). 

The TSI was further revealed to be a primary driver of bacterial and 
fungal community compositions in water or sediments. We used RDA to 
select environmental variables affecting bacterial and fungal community 
compositions and MRM analyses and multiple linear regressions for 
LCBD to investigate the drivers of beta diversity (pairwise dissimilarity 
and LCBD). In these three analyses, TSI was generally selected as a 
significant predictor for both taxonomic groups in water and sediments 
(Fig. 3), although the first and second axes of the RDA (WB: 10.8% and 
4.8%; SB: 6.7% and 4.5%; WF: 4.2% and 3.0%; SF: 5.6% and 4.5%) only 
explained a small amount of the variation observed, and R2 values of the 
final models of the MRM (WB: 0.211; SB: 0.393; WF: 0.180; SF: 0.190) 
and multiple regression (WB: 0.295; SB: 0.395; WF: 0.167; SF: 0.319) 
were also low (Fig. 3). Additionally, RDA analyses showed that pH and 
water temperature were the main drivers for both bacterial and fungal 
communities in water, while water depth, pH and NH4

+ and metal el
ements such as Mo were the main drivers for sediment communities 
(Fig. 3A). Notably, the community composition in water was signifi
cantly impacted by the turbidity for bacteria and the dissolved total 
phosphorus for fungi, while the community composition in sediments 
was significantly impacted by the dissolved organic carbon for bacteria 
and the total phosphorus for fungi (Fig. 3A). In line with the RDA results, 
MRM analyses revealed that community dissimilarity was largely driven 
by water temperature and pH for bacteria and fungi in water and by 
metal elements, water depth, pH and NH4

+ for sediments. In the mul
tiple linear regression for LCBD, the most important drivers were water 
temperature and TSI for bacteria in water, followed by the potassium 
and electrical conductivity, while TSI was a driver for fungi in water, 
followed by potassium (Fig. 3C). In sediments, the most important driver 
was aluminum for the bacterial LCBD, followed by nickel, while the 
NH4

+ and TSI were the most important drivers for fungi. 
Generalist species, quantified by large TSI range sizes, generally 

showed stronger environmental affinity along the trophic gradient and 
contributed more to biotic taxonomic homogenizations. For instance, 
the slopes of the relationships between the community dissimilarity and 
TSI changes decreased when generalist species were gradually removed 
for bacteria and fungi in both habitats, except for bacteria in sediments 
(Figs. 4A and S8A). In the MRM analyses, the removal of generalist 
species resulted in lower absolute values of the partial regression co
efficients of TSI with the exception of bacteria in sediments (Fig. 4B). 
The above importance of generalist species to the beta diversity was 
further supported by the sequential removal of specialist species, which 
showed that the slopes of the relationships between the community 
dissimilarity and TSI changes or partial regression coefficients of TSI in 

MRM analyses increased, albeit very slightly except for bacteria in 
sediments (Fig. S9A and B). Therefore, biotic homogenization with 
increasing TSI is largely driven by generalist species rather than 
specialist species. 

Notably, when we used the LCBD to quantify beta diversity, the re
sults were highly consistent with the above results using pairwise 
dissimilarity. For instance, the removal of generalist species led to 
decreased slopes of the relationships between LCBD and TSI and lower 
absolute values of the partial regression of TSI in multiple regression 
analyses except for bacteria in sediments (Fig. 4C and D), while the 
removal of specialist species resulted in the increase of above two pa
rameters for both taxonomic groups in water, but not in sediments (Fig. 
S9C and D). These results indicate that generalist species contribute 
more to the decreases in ecological uniqueness along the trophic 
gradient, and LCBD is a valuable indicator to reveal biological homog
enization at regional scales. Additionally, deterministic processes 
generally decreased when generalist species were removed but 
increased when specialist species were removed, albeit very slightly 
(Fig. S10). 

4. Discussion 

Rapid eutrophication of natural freshwater environments has 
become a major global concern threatening water environmental quality 
and biodiversity (Ansari et al., 2010; Kiersztyn et al., 2019). Under
standing the effects of eutrophication on microbes is crucial for aquatic 
ecosystems (Falkowski et al., 2008) due to their key roles in biogeo
chemical cycling and ecosystem functioning. In this study, we used 
pairwise dissimilarity and LCBD to explore the beta diversity patterns for 
bacterial and fungal communities in lake water and sediments along the 
trophic gradient and investigated the drivers underlying the observed 
beta diversity. We conclude three main findings: (1) Eutrophication 
causes the alteration of physicochemical factors and leads to bacterial 
and fungal community homogenization. (2) Although the TSI plays 
pivotal roles in bacterial and fungal community variation, other physi
cochemical variables and heavy metal elements have nonnegligible in
fluences. (3) Generalist species generally explain more variations in beta 
diversity along the TSI gradient and contribute more strongly to biotic 
homogenization. 

We generally observed biotic homogenization toward high trophic 
levels for bacterial and fungal communities in both water and sediments, 
which is supported by several lines of evidence. First, there were 
reduced similarities among bacterial and fungal communities with 
higher trophic status. This is indicated by a more concentrated cluster in 
highly eutrophic lakes than in other trophic statuses in ordination plots 
(Fig. 2A), which is the predominant approach to quantify biotic ho
mogenization with the dispersion metric calculated by the distance to 
group centroid in PERMDISP analysis (Hawkins et al., 2015; Holman 
et al., 2021; Huber et al., 2020). Second, there were generally lower 
mean dissimilarities for bacteria or fungi in both water and sediments in 
the highly eutrophic lake group, suggesting that the overall trend of 
community composition became similar along with the intensification of 
eutrophication. Finally, there were significant declines in LCBD with 
increasing TSI for fungi. Such patterns have also been documented for 
macroorganisms such as the benthic macroinvertebrates in 41 lakes of 
the middle and lower reaches of the Yangtze and Huaihe Rivers (Zhang 
et al., 2018a) and fish communities in 53 Danish lakes (Menezes et al., 
2015). 

For macroorganisms, the mechanisms of biotic homogenization are 
generally explored from three aspects: (1) extinction of native species, 
(2) invasion of widespread nonnative species, and (3) range expansion 
of native generalists (Holmes and Webster, 2010; Muthukrishnan et al., 
2020; Villeger et al., 2011). However, it is challenging to apply these 
three mechanisms for microbes largely due to the lack of feasibility in a 
clear definition of native and nonnative species. We thus developed an 
approach by gradual removal of generalists from observed communities, 
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Fig. 4. Effects of the species TSI range size on the degree of variation in beta diversity due to TSI changes. The TSI range size of each species was calculated by the 
difference between the maximum and minimum of TSI values in which the species occurred across all samples. For each habitat and taxonomic group, we classified 
the species into 20 range-size categories according to their TSI range size. For generalist species, we removed the species starting from the category of the largest TSI 
range size for the observed community, and then recalculated LCBD or Bray-Curtis dissimilarity. That is, all species with a TSI range size larger than specific cut-offs 
(x-axes) were removed from the observed community matrix. (a) The Bray-Curtis dissimilarity was recalculated for all sub-communities and the relationships be
tween the Bray-Curtis dissimilarity and TSI change were quantified with linear models. The slope indicates the degree of variation in beta diversity along the trophic 
gradient. (b) The Bray-Curtis dissimilarity was recalculated for all sub-communities and the relative contribution of the TSI to the beta diversity was quantified with 
MRM. The partial regression coefficients of TSI indicate the degree of variation in beta diversity along the trophic gradient. (c) The LCBD was recalculated for all sub- 
communities and the relationships of LCBD and TSI were quantified with linear models. The slope indicates the degree of variation in beta diversity along the trophic 
gradient. (d) The LCBD was recalculated for all sub-communities and the relative contribution of TSI to the LCBD was quantified with MLR. The partial regression 
coefficients of TSI indicated the degree of variation in beta diversity along the trophic gradient. The significantly (P ≤ 0.05) negative and positive relationships are 
shown by filled red and blue circles, respectively, while open circles show non-significant (P>0.05) relationships. 
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which could provide a scenario to mimic the gradual extinction of 
generalists to some extent and examine the roles of generalists in biotic 
homogenization. We proposed that the observed biotic homogenization 
caused by eutrophication may primarily result from the following three 
reasons. First, habitat heterogeneity, referring to the spatial and tem
poral variations in environmental variables (Shade et al., 2008), could 
be the main cause of biotic homogenization. This is because the habitat 
heterogeneity is a major determinant of beta diversity (Astorga et al., 
2014), and its reduction suggests fewer niches available in an ecosystem 
(Shade et al., 2008), increased competition among species for limited 
resources and possible extinction of competitively inferior native spe
cies. Macrophytes can provide habitats and food for other organisms and 
have vital roles in structuring communities in aquatic environments 
(Declerck et al., 2005). In highly eutrophic systems, the loss of macro
phytes and subsequent dominance of phytoplankton tend to decrease the 
overall habitat heterogeneity. 

Second, environmental filtering has a high probability of being a 
powerful mechanism for biotic homogenization because harsh envi
ronments such as eutrophication could decrease the importance of sto
chastic processes in structuring assemblages, leading to biotic 
homogenization (McGoff et al., 2013; Zhang et al., 2018a). Environ
mental filtering tends to exclude more sensitive species and favor more 
adapted, pollution-tolerant species, ultimately leading to biotic ho
mogenization via the range expansion of pollution-tolerant species and 
the decline or extinction of pollution-intolerant species. 

Third, eutrophication can result in homogenization by regulating 
interspecies interactions (Langenheder and Jurgens, 2001). For 
instance, interactions between phytoplankton and bacteria have been 
shown to influence bacterioplankton community composition (Currie, 
1990; Paver et al., 2013; Su et al., 2017). Phytoplankton can play a vital 
role in shaping the bacterial community by providing a source of organic 
matter, as dissolved organic carbon produced by different species of 
phytoplankton leads to selection for different bacterial communities that 
have different utilization capacities for organic matter (Li et al., 2017; 
Sarmento and Gasol, 2012). Additionally, phytoplankton can also 
negatively affect the bacterial community through nutrient competition 
(Rivkin and Anderson, 1997). 

Our results reveal that eutrophication plays a vital role in microbial 
community composition and beta diversity in water and sediments, 
which may be driven by multiple environmental variables. The micro
bial community composition is influenced by environmental variables 
related to nutrient enrichment, such as organic carbon, pH and heavy 
metals. Dissolved organic carbon produced by the photosynthesis of 
phytoplankton is an important carbon source for planktonic bacteria 
(Cole et al., 1982). Eutrophication causes the production of large 
amounts of algae-derived organic matter, leading to changes in organic 
mass sources and influencing bacterial community structure (Han et al., 
2020). Additionally, pH is a major environmental driver of the microbial 
community by regulating the relative importance and interplay between 
niche-related and neutral processes (Ren et al., 2015). Nutrient enrich
ment tends to accompany heavy metal pollution in many 
human-impacted aquatic ecosystems (Jaiswal and Pandey, 2019). 
Heavy metals often exhibit negative impacts on microbial community 
such as the declines in microbial diversity and enzyme activities 
(Hoostal et al., 2008). Moreover, the responses of microbial community 
structure and function to heavy metals may be stronger than those to 
nutrient enrichment (Zhang et al., 2021). On the other hand, microbial 
community composition can be synergistically driven by eutrophication 
and other environmental variables such as temperature. It has been re
ported that the effect of temperature on species richness is greatest at 
extreme nutrient levels whereas the effects of nutrients on species 
richness are strongest at intermediate temperatures (Wang et al., 2016). 
Moreover, slight warming may not significantly change the bacterial 
community composition in the mesocosms by itself but the bacterial 
community composition shifts when warming acts in concert with 
nutrient enrichment (Ren et al., 2017). It should be noted that nutrients 

and temperature may influence lake microbial communities largely 
independently (Schulhof et al., 2020). Collectively, the microbial com
munity structure is the combined effect of multiple environmental var
iables, but knowledge on the interaction mechanisms of these factors 
remains poor. 

Most importantly, we observed that generalist species with larger TSI 
range size may contribute more to beta diversity than specialists and 
play a key role in biotic homogenization along trophic gradients. The 
importance of generalists is also supported by the metric SCBD, which 
was higher than that of specialists (Fig. S11). This importance may be 
explained by the following reasons. First, our collected samples covered 
a relatively large trophic gradient, along which nutrient enrichment 
conditions could result in a decline in the competitive advantage of 
specialists, leading to the dominance of generalists in community as
sembly (Cook et al., 2018). Generalist species can tolerate a wide 
environmental range such that they have a decreased probability of local 
extinction in the whole study area (Szekely and Langenheder, 2014), 
and the variation in beta diversity may be mainly due to the change in 
their own relative abundance (Fig. S12). Second, specialist species 
usually occur in specific habitats and are low in abundance (Lindh et al., 
2016). They are more sensitive to environmental changes than gener
alists, and very slight environmental changes may cause the loss of 
species (Monard et al., 2016). In addition, we found that there was a 
lower proportion of deterministic processes in community assembly for 
specialists (Fig. S10), which indicates that species gain and loss are 
likely to result from stochastic processes such as random birth and death 
events (Jiao et al., 2020). Such frequent species gain and loss is likely 
responsible for the low contribution of specialists to variations in beta 
diversity, leading to the relatively stable uniqueness of specialist com
munity compositions at all sites, with consistently high dissimilarity 
between any two sites. Collectively, most of the variations in beta di
versity are attributed to the response of generalists to eutrophication, 
and thus generalists could be better indicator species of lake trophic 
status than specialists. 

5. Conclusion 

To our knowledge, our findings for the first time revealed the 
occurrence of biotic homogenization of microbes in water and sediments 
along trophic gradients. This suggests that biotic impoverishment might 
become more severe in the coming years if eutrophication is not effec
tively improved. Therefore, we believe that further observation of the 
microbial community under eutrophication is necessary. The mecha
nism of biotic homogenization caused by eutrophication should be 
identified before biotic impoverishment worsens. Moreover, our study 
reveals that generalist species contribute more to the variation in beta 
diversity than specialist species. To obtain a comprehensive under
standing of the effects of eutrophication on the microbial community, 
we suggest that generalists and specialists should be distinguished to 
explore the mechanism of variation in beta diversity in future studies. 
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