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Abstract

How microbial species performance such as growth rate and carbon assimilation rate responds
to environmental changes is a challenging question, especially for complex communities. This limits
our ability to understand how species performance responses to environmental changes (that is,
species environmental responses) of microbes could be linked to genomic traits and nutrient
availability. Based on stable isotope labelling of DNA, we propose a new approach with effect size
metrics to quantify the species environmental responses of microbes by comparing the species
performance between defined control and treatment groups. The species performance within
microbial communities of the natural or altered environments could be quantitatively determined with
quantitative stable isotope probing (qSIP). We further apply this approach namely effect size qSIP to
measure species environmental responses upon carbon and nitrogen additions for soil bacteria on
mountainsides and to understand their responses from the perspective of genomic traits. Towards high
elevations, there is a stronger nitrogen limitation which is indicated by the higher aggregated
responses, measured as community-weighted means, of bacterial growth rate upon nitrogen additions.
The aggregated responses are further explained by genomic traits, which show higher percentages of
significant Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues (KOs) and more diverse
KEGG pathways under nutrient additions including nitrogen and further improve the explanatory
power of microbial environmental responses. Nitrogen-induced responses at the species level show
the strongest associations with essential KOs for rare species, while carbon for dominant species. We
conclude that, in addition to environmental determinants such as nitrogen limitation, genomic traits
are extremely important for predicting microbial environmental responses at both the community and
species levels. Taking advantage of this new approach at the species level, we reveal that rare and
dominant species differentially respond to nutrient enrichment via their metabolic traits. The approach
and findings can lead to a more holistic understanding of microbial environmental responses in
natural habitats, which will be essential for predicting microbial community responses to global

environmental changes.
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Introduction

How does microbial species performance respond to environmental changes? Such a simple
question is challenging to answer with quantitative measurements, especially for complex
communities. This question remains in part due to a lack of pure culture isolates for most microbial
species which hinders the determination of their physiology and consequently their functional roles.
Overcoming this challenge, however, is becoming feasible with the culture-independent techniques
such as quantitative stable isotope probing (qSIP), which can quantitatively measure species
performance within natural communities based on stable isotope labelling of DNA (Hungate et al.
2015). More recently, microbial species performance such as soil bacterial growth and carbon
assimilation rates, quantified by qSIP have been shown to be constrained more by evolutionary
history than by contemporary environments, even along a broad climatic gradient (Morrissey et al.
2019). Further, microbial traits could be inferred from genomes or metagenomes (referred to as
“genomic traits”) (Barberan et al. 2014, Fierer et al. 2014, Hartman et al. 2017, Malik et al. 2020) and
affect the performance of an organism under environmental changes (Violle et al. 2007, Lennon et al.
2012). For example, genome size, TRNA operon copy numbers and orthologous gene content can
predict bacterial growth rates in natural habitats, such as soils (Li et al. 2019), and changes in bacterial
species in response to resource perturbations in pure cultures (Treseder et al. 2011, Roller et al. 2016,
Ho et al. 2017). At the whole-community level, microbial performance can be influenced by
environmental conditions such as organic matter source and nutrient enrichment (Taylor and
Townsend 2010, Mooshammer et al. 2014, Hartman et al. 2017). Community-aggregated performance
across phylogenetically diverse species has the potential to predict the ecosystem-level implications of
microbial processes (Fierer et al. 2014). Nevertheless, the constraints imposed by environmental
determinants and genomic traits on the responses of microbial performance to environmental changes

are rarely assessed at the species level in complex communities such as from natural habitats.

Here, we proposed a new approach named effect size qSIP (Box 1; Fig. 1) to evaluate the
effect sizes of responses of bacterial species performance to environmental changes (that is, species
environmental response) by comparing the species performance between defined control and

treatment groups. For instance, the species performance such as the growth rate and carbon
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assimilation rate could be measured with qSIP, and we then quantified the magnitude and direction
(i.e., positive or negative) of species performance responses to environmental alterations such as
nutrient resource changes, soil carbon and nitrogen availabilities with effect size metrics. Furthermore,
we evaluated the validity and generality of the proposed approach at both species and community
levels by re-examining the unprecedented qSIP data of 96 soil samples reported in Morrissey et al.
(2019) to recalculate bacterial species performance in four ecosystems along the C. Hart Merriam
elevational gradient of 1,760-2,620 m. These ecosystems include desert grassland, pinyon-juniper
woodland, ponderosa pine forest and mixed conifer forest (Morrissey et al. 2019). In addition to
demonstrating this new approach to natural microbial communities, we also aimed to examine: (1) the
elevational patterns of aggregated species performance and environmental responses, measured as
community-weighted means (CWM), (2) the drivers such as environmental determinants for the
microbial environmental responses at the community level, (3) the influences of genomic traits,
including genomic signatures and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues
(KOs), on microbial environmental responses at both the community and species levels, and (4) the
divergent effects of KOs on species environmental responses between rare and dominant species (Fig.
1). We showed that this new approach could be easily applied to quantify the responses of microbial
species performance in natural environments upon environmental changes. We also revealed that
environmental determinants, such as nitrogen limitation, and genomic traits are extremely important
for microbial environmental responses at both the community and species levels, and that rare and

dominant species differentially respond to nutrient enrichment via their metabolic traits.

Materials and Methods
Experimental design

We reanalysed previously reported qSIP data (Morrissey et al. 2019). More details on sample
collection, incubation conditions and molecular analyses are described in Morrissey et al. (2019).
Briefly, soils were collected in October 2014 from four ecosystems along the C. Hart Merriam

elevational gradient near Flagstaff, AZ, USA. Within each ecosystem, triplicate soil samples were
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collected for stable isotope incubations. The incubations involved exposing 1.0 g of dry soil with a 70%
water-holding capacity to a glucose solution of 1,000 pug C g! soil or a nitrogen solution of 100 pg N
g! soil in the following eight isotope-substrate treatments (each with n = 3 per ecosystem): H,'°O
only (160), 97 atom% H,'30 only (180), '2C-glucose + H,!°0 (12C), 99 atom% '*C-labelled glucose
+ H,'%0 (13C), 2C-glucose + 97 atom% H,'30 (12C _180), '2C-glucose + H,'°O + NH4NO; (12C_N),
99 atom% '3C-labelled glucose + H,'°0 + NH4NO; (13C _N) and '>C-glucose + 97 atom% H,'80 +
NH4NO; (12C 180 _N) (Fig. 1). After a seven-day incubation, DNA was extracted from 96 soil
samples (4 ecosystems x 3 replicates x 8 treatments) and then subjected to ultracentrifugation to
separate the DNA according to density along a caesium chloride (CsCl) density gradient. After
centrifugation, samples were fractionated, and the DNA in each fraction was purified. The 16S rRNA
gene was subsequently quantified via quantitative PCR and sequenced using 515F and 806R primers
on an Illumina MiSeq instrument within a density range of 1.660-1.735 g ml! (~17 fractions per

sample).

Data analysis
Sequence analyses

The sequences and all accompanying metadata were downloaded from the NCBI SRA
database (project No. PRINA521534). The raw sequences were analysed using a custom pipeline.
Briefly, FastQC v0.11.8 was used to check the Phred quality of the sequences and the frequency of
potential sequencing adapters (Andrews 2010). Then, each sequence was trimmed using the paired-
end mode of Trimmomatic v0.39 with an average Phred quality within a 4-bp sliding window greater
than 25, and the filtered reads shorter than 250 bp were discarded (Bolger et al. 2014). Due to the
large amount of memory required by the QIIME 2 program (Bolyen et al. 2019), the clustering and
selection of operational taxonomic units (OTUs) and taxonomic assignment were achieved using the
script ‘pick open_reference otus.py’ in QIIME v1.9.1 (Caporaso et al. 2010). UCLUST (Edgar 2010),
a high-speed and low-memory-usage clustering method implemented in QIIME, was used to cluster
the sequences with a similarity threshold of 97%. Taxonomic assignment of each OTU was performed

using the UCLUST program, which aligns sequences against the Greengenes database (v13.8). OTUs
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represented by less than 0.005% of the total sequences were discarded, which results in the inclusion
of 2,199 OTUs for the following analyses. Bacterial diversity was estimated as the number of OTUs
rarefied to the lowest number of reads (70,000) obtained for each ecosystem replicate. To verify that
our results were similar to those in the previous report (Morrissey et al. 2019), non-metric
multidimensional scaling (NMDS) was performed to evaluate the elevational succession of bacterial
communities in the 96 samples in the eight treatments (Appendix S1: Fig. S1). These analyses were

performed using the R package vegan V2.4.6 (Dixon 2003).

Estimating genomic traits

We mapped the OTUs corresponding to species whose genome sequence is available in the
public database through sequence alignment of the 16S rRNA gene. Although mapping methods
based on the alignment of a single gene sequence are controversial in terms of accuracy, similar
alignment methods have been widely used and found to produce sound ecological findings (Barberan
et al. 2014). In brief, the bacterial and archaeal gbk files available in the NCBI RefSeq database
(21,788 species with unique taxonomic identities) were downloaded (date: 2019-04). The 16S rRNA
gene sequence (at least 1,000 bp) was extracted from each organism, and the sequences were pooled
together to form the reference database. When multiple 16S rRNA genes were present in the genome
of an organism, the longest one was selected as the representative. The OTU sequence was aligned
against the reference database using the BLASTN program with an e-value of 1e-5. The top hits with
a sequence identity larger than 97% and an alignment length > 80% longer than the query length were
considered closely related representatives of the query OTUs. It should be noted that we used the
same similarity threshold 97% in genome matching as our previous 16S rRNA gene sequence analysis.
Totally, there were 26.7% OTUs which can retrieve the closely related genomes for the following
analyses. For most OTUs identified using this high-throughput amplicon sequencing approach, no
closely related genomic sequences were retrieved, partly because of the gap between the sequenced
genome in the public database and the extremely high microbial diversity in nature. The
corresponding genomic signatures, including genome size, coding DNA sequence number (CDS),

total gene number, GC content, and rRNA operon copy numbers, of the OTUs with matched genome
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sequences were estimated and assigned to the OTUs. To further obtain the metabolic potential of the
OTUs, the amino acid sequences of protein-coding genes in the genomes were aligned against
orthologous sequences in the KEGG database (date: 2017-09) using DIAMOND v0.8.22 (Buchfink et
al. 2015). The consensus KEGG ortholog identity among the top 10 hits was assigned to the query
gene. Unless stated explicitly, the default parameters were used in the programs mentioned above. KO
richness was estimated using the number of orthologues for each species. It should note however that
concerns should be taken into account when inferring microbial traits from genomes. For instance,
genomes reflect both active and inactive species in natural habitats, like soil, and the relevant findings
obtained could be further supported with transcription and translation data. For the better
understanding of general ecologists, we used the term “species” to represent “OTU” in the following

statistical analyses such as species performance and species environmental response.

Excess atom fraction (EAF) estimation

The EAFs of 180 and !3C for each species were estimated following the code associated with
gSIP calculations publicly available at https://bitbucket.org/QuantitativeSIP/qsip_repo (Hungate et al.
2015, Morrissey et al. 2017). Briefly, a weighted average density (WAD) was calculated for each
species’ DNA after incubation in the presence of unlabelled and isotopically enriched substrates (that
is, water and glucose) based on its distribution across a CsCl density gradient. The shift in WAD
following incubation with an isotopically enriched substrate can be used to quantify the amount of
isotope incorporation, based on the theoretically modelled and experimentally verified relationship
between isotope incorporation and DNA molecular weight (Hungate et al. 2015). As previously
described (Morrissey et al. 2017), tube-level WAD corrections were performed due to the effect of
ultracentrifuge tube on species WAD estimation, probably a consequence of slight differences in CsCl

density gradients between the tubes.

Estimating species performance with qSIP
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Microbial performance included growth rate (GR) and carbon assimilation rate (CAR), which
were measured by the EAFs of 180 and '3C, respectively, at the community and species levels. There
were five metrics of microbial performance: the GR without added substrates (GR.na), with added
carbon (GR.C) and with added carbon & nitrogen (GR.CN) and the CAR with added carbon (CA.na)
and with added carbon & nitrogen (CA.N) (Fig. 1). The unlabelled and labelled treatments for
estimating the performance metrics of GR.na, GR.C, GR.N, GR.CN, CAR.na and CAR.N were "160
vs. 180", "12C vs. 12C 180", "12C N vs. 12C 180 _N", "12C vs. 13C", and "12C N vs. 13C_N",
respectively (Fig. 1).

To scale up species performance to the community level, we calculated the CWM of the
species GR (GRcwm) or CAR (CARcwwm), which represents community mean performance based on

community composition and reflects the mean species behaviour (Fig. 1).

CWM = Zn: p, x performance, ,
i1

where p; is the relative abundance of species 1 in the community and performance; is the
functional performance value of species i, e.g., its GR or CAR. Similarly, CWMs were calculated
based on the species environmental responses and the genomic traits of species. This analysis was
performed using the R package FD V1.0.12 (Lavorel et al. 2007). Although CWM-based correlations
are likely the most widely used approach to link traits to environmental variation, other powerful
methods considering both site-level and species-level components such as the fourth-corner approach
(Peres-Neto et al. 2017) are encouraged to provide additional supports to current findings in future

studies.

Estimating species environmental responses with effect size gSIP

Further, to quantify the magnitude and direction (i.e., positive or negative) of microbial

responses to environmental alterations such as carbon or nitrogen addition, we proposed an effect size
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approach using the standardized mean difference Hedges’ g as the effect size metric (Hedges 1981,

Hedges and Olkin 1985):

_ EAF - EAF. T(df/2)
S pooled Jdf2r(df - 1)’

g

where EAF. and EAF. are the EAF means of the treatment and control groups, respectively,

— 2 —
> (EAF, — EAF) + Y (EAF, - EAE)
1

n,+n, —2

I'is the gamma function and df = n,+ n¢ - 2. Spooled = \/ S

the pooled standard deviation of the two groups (n;=n, = 3).

Hedges' g is a variation of Cohen's d that corrects for biases due to small sample sizes (Hedges
and Olkin 1985), which is the case for this study with a replicate of three. Similar to microbial
performance, we considered microbial environmental responses at the species and community levels.
There were four metrics of microbial environmental responses assessed with Hedges’ g: the GR under
the addition of carbon (GR.C g), nitrogen (GR.N g) and carbon & nitrogen (GR.CN g) and the CAR
under nitrogen addition (CAR.N g) (Fig. 1). At the bacterial species level, the treatment and control
groups of performance metrics used to estimate the response metrics of GR.C g, GR.N g, GR.CN g
and CAR.N g were "GR.C vs. GR.na", "GR.CN vs. GR.C", "GR.CN vs. GR.na" and "CAR.N vs.
CAR.na", respectively (Fig. 1). Similarly, for the community level, we calculated the CWM of
species environmental responses of GR and CAR (that is, GRcwy g and CARcwwm g, respectively)
(Fig. 1). We acknowledge there are unstandardized effect size statistics, such as the unstandardized
mean difference between groups, which, however, is not suitable in our study due to the following
facts. (1) The standardized mean difference such as Hedges' g allows us to draw more general
conclusions for the comparisons across studies as it has no units and considered both mean difference
and the variation within treatment and control groups. (2) High variations could be generated within
each group for molecular data such as sequencing and quantitative PCR, which should be
standardized by using effect size Hedges' g when comparing the microbial environmental responses
across contrasting ecosystems or upon different nutrient additions. The effect size analyses were

performed using the R package metafor V2.2.8 (Viechtbauer 2010).
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Statistical analyses

We used the following variables, including those related to contemporary environments,
bacterial diversity and genomic traits, as explanatory variables. The contemporary environmental
variables included mean annual temperature (MAT) and precipitation (MAP) and soil variables such
as soil organic carbon (SOC), soil nitrogen, the C/N ratio, microbial biomass carbon (MBC) and
nitrogen (MBN), the MBC/MBN ratio, and soil pH. For genomic traits, we considered genomic
signatures (i.e., genome size, CDS, total gene number, GC content, and rRNA operon copy numbers),
KO copy numbers (KOs), and KO richness. The response variables included microbial performance
and environmental responses at the community and species levels and were analysed for their

elevational patterns and dependence on contemporary environmental factors and genomic traits.

First, elevational patterns of microbial performance and environmental responses at the
community level were visualized using the linear or quadratic model with the lowest Akaike’s
information criterion value (Sakamoto et al. 1986). We further evaluated the significance of the CWM

of microbial performance between performance metrics at each elevation using Student's t-test.

Second, the influences of contemporary environments and genomic traits on microbial
environmental responses were evaluated by the Pearson correlation analysis at the community level

and by the meta-analysis at the species level.

Pearson correlation analysis was performed to examine the correlations between community-
level microbial environmental responses and explanatory variables. Three types of explanatory
variables were from three groups: contemporary environments, bacterial diversity and the CWM of
genomic traits. For genomic traits, we considered the CWMs of genome size, CDS, total gene number,
GC content, rRNA operon copy numbers, and KO richness; the mean CWM of copy numbers of all
KO (mean KOs); and the CWM of copy numbers of each KO (KOs).

Meta-analysis via linear mixed-effects meta-regression models was performed to examine the
explanatory power of genomic traits for species environmental responses using the R package metafor

V2.2.8 (Viechtbauer 2010). We examined the influences of genomic traits such as genomic signatures
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and all KOs on species environmental responses for each species and for each bin of species based on
their abundances. It should be noted that that assigning genomic traits to the OTUs may differentially
affect rare and abundant species, which could bias the results showing different genomic traits
between these two groups. To avoid these biases, we studied the relationships between genomic traits
and species environmental responses along the gradient of bacterial relative abundance. Specifically,
we categorized all species into 22 bins according to their relative abundances, and kept species
numbers even for all bins. We sequentially removed the species from lower bins and then examined
the influence of species abundance on species environmental responses. In each model, we modelled
species environmental responses as a function of each of genomic signatures or KOs, and used
ecosystems (that is, elevations) as random effects. The Wald-type test was used to evaluate model
significance, and pseudo-R’ represented the influence of each KO on the species environmental
response. The pattern of this influence across species abundances was modelled using quadratic
regression. Further, we examined the influence of Level 2 KEGG pathways of their KOs on species
environmental responses. The meta-analytic models were selected using the R package glmulti 1.0.7.1

(Calcagno and de Mazancourt 2010).

Results and discussion

For the species performance at the community level, GRcwy (that is, community-level growth
rate) showed a non-significant relationship with elevation without environmental alteration (P = 0.159)
(Fig. 1a). When carbon was added, GRcwy significantly increased at the two lower elevations (t-test,
P <0.05) and showed marginally significant decreases with increasing elevation (P = 0.083) (Fig. 2a).
Nitrogen addition further promoted GRcwy at higher but not lower elevations (Fig. 1a). In contrast,
CARcww (that is, community-level carbon assimilation rate) increased upon nitrogen addition at low
and high elevations (t-test, P < 0.05) and showed hump-shaped elevational patterns, with the lowest

values at the highest elevation, regardless of nitrogen addition (Fig. 2a).

For the microbial environmental response at the community level, nitrogen addition generally

substantially improved GRcwy g (that is, community-level growth rate response) at high elevations,
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leading to significant increases towards high elevations, regardless of whether carbon was included (P
= 0.008 and P < 0.001 for GR.CN g and GR.N g in Fig. 2b, respectively). In contrast, CARcwm g
(that is, community-level carbon assimilation response) under nitrogen addition showed no such
pattern (P = 0.565; Fig. 2b). These increases in GRcwy g with increasing elevation clearly indicated
stronger nitrogen limitation towards higher elevations, which was consistent with the previous
comparison of GRcwwm between carbon and carbon-nitrogen addition treatments revealing strongly
promoted microbial growth upon nitrogen addition at higher elevations (Fig. 2a). Such nitrogen
limitation at high elevations was further confirmed by the coordinated differences in GRcwy g
between nitrogen and carbon-nitrogen additions (that is GR.IN g and GR.CN g in Fig. 2b,
respectively). These findings also revealed little variation in the effects of carbon on GRcwy g across
drastically different ecosystems, which was also supported by the non-significant elevational patterns
of GRcwm g with carbon addition alone (that is GR.C g in Fig. 2b; P = 0.293). Our findings of
nitrogen limitation, also indicated by larger soil C/N ratio than MBC/MBN ratio, revealed the effects
of soil nitrogen and carbon stoichiometry underlying growth rate variations of microbial communities

across elevations.

This unbalanced stoichiometry of nitrogen and carbon was further supported by Pearson
correlations between contemporary environments and the community-level responses of GR or CAR.
For instance, the GRcwm g under nitrogen and carbon-nitrogen additions, but not the value under
carbon addition, were most highly positively associated with MBN, with Pearson r values of 0.97 and
0.89, respectively (P < 0.001, Fig. 2¢). This pattern suggests that nutrient additions including nitrogen
promoted bacterial growth, and that the microbes having high nitrogen demand were more responsive
to nitrogen than carbon additions. This result was further supported by the negative Pearson r value
between MBC/MBN and GRcwy g under nitrogen and carbon-nitrogen additions, which were -0.70
and -0.54, respectively (P = 0.01 and 0.07, respectively; Fig. 2c). Further, the positive GR responses
to nitrogen additions were supported by the nitrogen demand exceeding its supply, which was
revealed by the fact that the GRcwym g under carbon addition, but not the values under nutrient
additions including nitrogen, was strongly negatively related to soil C/N ratio (r = -0.88, P <0.01; Fig.
2¢), indicating the deteriorated nitrogen supply upon alleviated carbon limitation. Nitrogen limitation

was also supported by CARcwMm g under nitrogen addition alone, which showed a significant and
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strong positive relationship with the soil C/N ratio (r = 0.61, P = 0.03) but no relationship with
MBC/MBN (r = 0.18, P =0.58) (Fig. 2¢).

In addition to the contemporary environments considered above, genomic traits were also an
important driver of microbial community responses to nutrient additions (Fig. 2¢). However, these
traits were rarely examined in previous literature, especially at the species level. For example, the
effects of genomic traits on CARcwy g under nitrogen addition were revealed by its significant
negative correlations with the CWMs of genome size, total gene number, and KO richness (Kanehisa
et al. 2016) (r = -0.51 ~ -0.68, P = 0.01 ~ 0.09; Fig. 2c). This finding was further supported by a
proportion (12.0%) of KOs that were significantly correlated with CARcwy g under nitrogen addition,
most of which showed negative correlations (Fig. 3a, b). Further, compared to that under carbon
addition, the GRcwwm g under nitrogen and carbon-nitrogen additions was more strongly explained by
and positively associated with the average CWM of KO copy numbers and the CWM of GC content
(r=0.55~0.72, P = 0.009 ~ 0.06; Fig. 2c). This result may have been caused by increased growth
responses due to the enhanced metabolism upon nutrient additions including nitrogen. This finding
was further supported by three observations. (1) There were higher percentages of KOs that were
significantly correlated with GRcwym g upon nitrogen addition (hereafter defined as significantly
responsive KOs), that is, 47.3% and 38.1% for nitrogen and carbon-nitrogen additions, respectively
(Fig. 3a). (2) These significantly responsive KOs were from more KEGG pathways which are related
to multiple biosynthesis and energy-yielding processes, such as amino acid metabolism, carbohydrate
metabolism, energy metabolism, membrane transport and cofactor and vitamin metabolism (Fig. 3a).
(3) These significantly responsive KOs showed stronger correlations with GRcwy g under nitrogen
and carbon-nitrogen additions for either the KOs involved in all KEGG pathways (Fig. 3b, Appendix
S1: Fig. S2), or the KOs involved in carbon- and nitrogen-related pathways, such as carbohydrate and
energy metabolism (Fig. 3b, Appendix S1: Fig. S3) and nitrogen metabolism (Appendix S1: Fig. S4)
pathways.

These community-level findings suggest that genomic traits may also explain species-level
responses to environmental changes. When all species were considered, there were significant

relationships between such responses and genomic traits, as expected at the species level (Fig. 3c,
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Appendix S1: Fig. S5, S6). For instance, compared to that under carbon addition, the three following
observations were made for the Hedges’ g of the GR or CAR, particularly upon nitrogen addition
alone: (1) Weaker associations with genomic signatures such as genome size and total gene number
(Appendix S1: Fig. S5); (2) Higher percentages of significantly responsive KOs, that is, 9.3% and
20.2% for the g of GR and CAR with nitrogen addition, respectively (Fig. 3¢); (3) higher diversity in
the KEGG pathways of these significantly responsive KOs (Fig. 3c); and (4) higher percentages of the
lower-level pathways associated with significantly responsive KOs in multiple top-level pathways,
such as glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, and replication

and repair (Appendix S1: Fig. S6).

Interestingly, preliminary patterns in the volcano plot revealed that many dominant species
showed neutral responses to nutrient resource changes, indicated by low Hedges’ g values (Appendix
S1: Fig. S7a). These phenomena collectively indicate that rare and dominant species may respond
differently, as previous literature has suggested (Lynch and Neufeld 2015). Thus, we categorized the
species into 22 bins according to their relative abundances (Appendix S1: Fig. S7b) and quantified the
abundance-response relationship of each bin with the slope of linear model for negative or positive
species environmental responses. We found that the slope increased toward higher species
abundances under carbon addition, while declined under nutrient additions including nitrogen (P <

0.001; Fig. 3d, Appendix S1: Fig. S8).

Further, to integrate the effects of genomic traits on the negative and positive responses along
the species abundance gradients within a united data-analysis framework, we conducted meta-
analyses with linear mixed-effects meta-regression models. We explored the correlations between
species environmental responses and genomic traits for each bin (Fig. 3e, Appendix S1: Fig. S9).
Specifically, when considering only the KOs with highly significant Pearson coefficients with
microbial environmental responses at the community level (that is, the top 50 KOs, P < 0.001), we
found that under carbon addition the pseudo-R’ between these KOs and the species-level GR g
showed a rising right-hand side of U-shaped pattern, with the highest values at the highest species
abundances (P < 0.001; Fig. 3e, Appendix S1: Fig. S9a). Interestingly, under nitrogen addition alone

such influences of KOs on species environmental responses showed a sinking left-hand side of the

This article is protected by copyright. All rights reserved



“U”, with the highest values at the lowest species abundance (P < 0.001), while had a hump-shaped
pattern under carbon-nitrogen addition with the highest pseudo-R? at ~0.5% of species abundance (P
< 0.001; Fig. 3e, Appendix S1: Fig. S9a). Similar patterns were observed under these nutrient
additions when all KOs were considered (Appendix S1: Fig. S9b). These results collectively indicate
that the associations between genomic traits and species environmental responses were strongest for
the dominant species under carbon addition, whereas for the rare species under nitrogen addition.
Such distinct associations are probably occurred because rare and common bacteria are implicated in

fundamentally different types of ecosystem functioning.

In summary, we developed a new approach named effect size qSIP to quantify microbial
species performance responses to environmental changes and further applied it to measure species
environmental responses upon nutrient additions for soil bacterial species in diverse ecosystems along
an elevational gradient. The findings revealed by this approach have at least three substantial

implications regarding species- and community-level responses to environmental changes.

(1) Nitrogen limitation on community-level GR changes at high elevations indicates the high
vulnerability of ecosystem carbon storage and stabilization in response to global changes such as
anthropogenic nitrogen deposition, especially in nitrogen-poor regions, such as Arctic regions, or at

high elevations (Du et al. 2020).

(2) In addition to contemporary environments, genomic traits are extremely important for the
changes in microbial GRs and CARs in response to environmental changes at both the community
and species levels. Modelling soil carbon dynamics in response to environmental changes by
explicitly considering microbial functional traits can increase model accuracy (Hagerty et al. 2018,
Sulman et al. 2018). It is thus essential to integrate microbial genomic traits into models such as the
Microbial-Mineral Carbon Stabilization (MIMICS) (Wieder et al. 2015) and the Decomposition
Model of Enzymatic Traits (DEMENT) (Allison 2012, Allison and Goulden 2017, Malik et al. 2020)

models to improve predictions of global carbon fluxes in response to future environmental changes.

(3) Taking advantage of this new approach at the species level, we revealed for the first time

that species environmental responses under carbon and nitrogen additions are more strongly
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associated with essential traits for rare and dominant species, respectively. This phenomenon indicates
that rare and dominant species differentially respond to nutrient enrichment via their metabolic traits.
Further studies are encouraged to test this generality with diverse taxonomic groups and species
performance in response to other environmental changes, such as climate warming, phosphorus-

driven eutrophication and anthropogenic disturbances.

Taken together, our new approach with stable isotope labelling of DNA is generally applicable
in natural complex environments such as soils to quantitatively evaluate the response of microbial
species performance to environmental changes and further the underlying mechanisms at the species
level. The obtained insights can lead to a more holistic understanding of microbial environmental
responses in natural environments, which will be essential for predicting microbial community

responses to global environmental changes.
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Box 1

Species performance: Microbial species functions, such as growth rate and carbon assimilation rate,

which could be driven by contemporary environments and species traits.

Species environmental response: A change in microbial species performance upon external
environmental alteration, such as nutrient enrichment and temperature variation. Such species
environmental response could be upscaled to a community-by-community level-aggregated measure
such as community-weighted mean. Microbial environmental responses could thus be quantified at

both species and community levels.

Genomic traits: Genomic features of microbial species such as genome structure (e.g., genome size,
GC content, rRNA operon number, and the number of genes) and the abundance of functional genes

or proteins, which could be inferred from genomes or metagenomes.

qSIP: Quantitative stable isotope probing, which quantitatively measures species performance within

their natural habitats.

Effect size qSIP: A qSIP-based quantitative measure of microbial species responses to environmental

alteration, which can be measured with effect size metrics, such as Hedges’ g.

Community-weighted mean (CWM): A community level-aggregated measure of a species
performance, species environmental response or trait, which is based on community composition (that

is, species relative abundances) and reflects the mean species behaviour or feature.
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Figure legends

Fig. 1. The framework outlining our experimental setups, methods and aims. For experimental
setups, there were eight isotope-substrate treatments (that is, a-h) with the combination of NH4;NO;,
glucose and water additions. Using Quantitative stable isotope probing (qSIP), we measured the
excess atom fraction (EAF) of 180 for the growth rate (GR) or 13C for the carbon assimilation rate
(CAR) under five conditions of species performances. For GR, the three conditions were: without
added substrates (GR.na), with added carbon (GR.C) and with added carbon & nitrogen (GR.CN). For
CAR, there were two conditions: with added carbon (CAR.na) and with added carbon & nitrogen
(CAR.N). These species performances in GR and CAR were the same as reported in Morrissey et al.
(2019). However, we further proposed a novel approach named effect size qSIP, which quantifies the
effect sizes of responses of microbial species performance to nutrient additions (that is, species
environmental responses) by comparing the defined control and treatment groups. There were four
metrics of species environmental responses assessed by Hedge’s g: GR under the addition of carbon
(GR.C g), nitrogen (GR.N g) and carbon & nitrogen (GR.CN g) and CAR under nitrogen addition
(CAR.N g). For each metric, we relatively defined treatment and control groups (indicated by hollow
and solid color lines, respectively) according to what nutrient effects to be examined. For instance,
when considering the effect of nitrogen on GR, the treatment and control groups are GR.CN and
GR.C, respectively. Finally, we aimed to examine: (1) the elevational patterns of aggregated species
performance and environmental responses, measured as community-weighted means (CWM), (2) the
environmental determinants on microbial environmental responses at the community level, and (3) the
influences of genomic traits, including genomic signatures and KEGG orthologues (KOs), on
microbial environmental responses at both the community and species levels. (4) We also studied the
divergent effects of KOs on species environmental responses between rare and dominant species

along the gradients of species relative abundance.

Fig. 2. Community-level species performance (a) and environmental responses (b) to nutrient
additions and the influences of environmental factors and genomic traits (c). (a) These community-

level measures were evaluated with community-weighted means (CWMs) of two measures of species
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performance (growth rate (GR) and carbon assimilation rate (CAR)) and then plotted against
elevation. For GR, three conditions were considered: without added substrates (GR.na), with added
carbon (GR.C) and with added carbon & nitrogen (GR.CN). For CAR, there were two conditions:
with added carbon (CAR.na) and with added carbon & nitrogen (CAR.N). (b) The species
environmental responses were quantified by the effect size metric Hedges’ g. The community-level
responses of GR (GRcwwm g) were assessed for three scenarios: the addition of carbon (GR.C g),
nitrogen (GR.N g) and carbon & nitrogen (GR.CN g). The community-level responses of CAR
(CARcwMm g) were evaluated only under nitrogen addition (CAR.N g). (¢) The heatmap shows the
positive (red) and negative (blue) Pearson coefficients between microbial environmental responses
and explanatory variables. Explanatory variables are from three categories: contemporary
environments, bacterial diversity and CWMs of genomic traits. The contemporary environmental
variables include mean annual temperature (MAT) and precipitation (MAP) and soil variables such as
soil organic C (SOC), soil N, the C/N ratio, microbial biomass carbon (MBC) and nitrogen (MBN),
the MBC/MBN ratio and soil pH. For genomic traits, we considered the CWMs of genome size,
coding DNA sequence number (CDS), total gene number, GC content, rRNA operon copy numbers
and KEGG orthologue (KO) richness, as well as the mean CWM of KO copy numbers (mean KOs).
The bold and regular numbers in the heatmap indicate the Pearson coefficients with P < 0.05 and P <

0.1, respectively.

Fig. 3. The influences of genomic traits on microbial environmental responses at the
community and species levels. There were four metrics of microbial environmental responses
assessed with Hedges’ g: the growth rates (GR) under the addition of carbon (GR.C g), nitrogen
(GR.N g) and carbon & nitrogen (GR.CN g) and the carbon assimilation rate (CAR) under nitrogen
addition (CAR.N g). (1) At the community level, the influences were examined by Pearson
correlation analyses for all KOs (a-b). (a) For each response metric, the blue rectangular point
indicates the percentage of KOs that were significantly (P < 0.05) correlated with the community-
level responses. For better visualization, we show only 12 KEGG pathways, each of which has > 1%

of significantly responsive KOs, as shown in the figure legend. (b) The density plot shows the Pearson

This article is protected by copyright. All rights reserved



coefficient distribution for the KOs involved in all KEGG pathways (All KOs; upper panel) and the
KOs involved in carbon- and nitrogen-related pathways (C&N KOs; lower panel) for each response
metric. The carbon- and nitrogen-related pathways include carbohydrate metabolism and energy
metabolism. (2) At the species level, the influences were examined using linear mixed-effects meta-
regression models and the meta-analysis framework (c-¢). (c) We examined the influences of all KOs
on the responses of each species. For each response metric, the blue rectangular point indicates the
percentage of KOs that were significantly (P < 0.05) correlated with the species-level responses. For
better visualization, we show only 16 KEGG pathways, each of which has > 0.2% of significantly
responsive KOs, as shown in the figure legend. (d) The influences of species abundance on positive
(upper panel) or negative (lower panel) responses along the species abundance gradient. The species
were categorized into 22 bins according to their relative abundances, with even species numbers for
all bins. These bins were numbered from 1 to 22, and the higher number indicates higher relative
abundance. We sequentially removed the species from lower bins and then examined the influence of
species abundance on species-level responses by linear model for positive or negative species
environmental responses (that is, Hedges’ g). The influence was quantified by the slope of abundance-
response relationships with linear model, as detailed in Appendix S1: Fig. S8. For these influences
along the species abundance gradient, solid lines are the significant (P < 0.05) quadratic regression
fits, while dotted lines indicate non-significant relationships (P > 0.05). Mean species abundance is
the average of species relative abundance for each scenario as indicated in Appendix S1: Fig. S8. (e)
The influences of KOs on species environmental responses across the 22 species abundance-based
bins. The influence for each bin (that is, the explained variation, %) was quantified by pseudo-R? by
considering only the KOs that had highly significant Pearson coefficients with microbial
environmental responses at the community level (that is, the top 50 KOs, P < 0.001). The patterns of
influence along the species abundance gradient are indicated by solid lines obtained using quadratic
regression models (P < 0.001 for GR.C g and GR.CN g, P = 0.025 for GR.N g, and P = 0.080 for

CAR.N g). Mean species abundance is the averaged species relative abundance for each bin (e).

This article is protected by copyright. All rights reserved



Experiment

Effect Size qSIP

Statistics

Aims

0.
() (1) () % N

®
6 ©6 o6 o 6 6 urC

eﬂ
6 © o 6 o 6 o o o0
D R E DS
(( Isotope EAF

Species
B GR.na GR.C GR.CN CAR.na CAR.N

Effect size
Environmental
GR.Cg GR.Ng GR.CN g CAR.N g
| |
~ Patterns ———  Drivers
Environmentsl [Genomic signatures] l KOs ]
} } | }
CWM CWM  Species CWM  Species —
I I I | |
inear Corralation [ Correlatlonl analysis ]
model analysis [Meta—analysis] [ Meta-analysis ]
Elevational Environmental G trait Rare vs.
pattern determinants enome trafts dominant species

ecy_3382_f1.tif

This article is protected by copyright. All rights reserved



(a

CWM

) (b)
0.151 2.0 4
1.5
0.107 > ~-GR.Cg
= ~+GRNg
% 1.0 ~~GRCNg
0.054 CARN g
0.5
i A
0.00 A
0.0
1750 2000 2250 2500 1750 2000 2250 2500
Elevation (m)

Elevation (m)

I EEEN =

Pearson
Correlation

I 1.0
. 0.0

ecy_3382_f2.tif

This article is protected by copyright. All rights reserved



5
N

—
(¢
N

[ Amino acid metabolism

. Biosynthesis of other secondary metabolites
[ carbohydrate metabolism

[ cell growth and death

. Cellular community — prokaryotes

B Energy metabolism

B Global and overview maps

B Lipid metabolism

| Membrane transport

[l Metabolism of cofactors and vitamins

. Metabolism of other amino acids

. Metabolism of terpenoids and polyketides
I Nucleotide metabolism

. Replication and repair

[ signal transduction

. Xenobiotics biodegradation and metabolism

log,, (Mean species abundance)

T T T
0.2 0.4 0.6

T T T
0.3 1.0 3.0

& 20 A &
40 4
S ? S 154
8 8
2 307 4
€ € 104
3 - S ®
5 ® 5
» N e
104 & 5
1 -IJ.I... ]
T T T T T T T T
GRCg GRNg GRCNg CARNg GRCg GRNg GRCNg CARNg
(b) (d)
1.2 4 0.20
3 -
0.8
>
5 =
\ =
o
0.4 @
14 5 (4
. / J "\
Q 0.0+ 01 AN
ks -10  -05 0.0 05 10 -10 -05 00 05 10
>
7]
S 1.2 (e)
o 4 - —— GR.Cg
—— GRINg \
0.9
5. —— GRCNg a0
2 CARNg X
[e]
06 / / 5 8 3
X z g
g X 20 -
3 0
0.3 14 - @
/ > /’
0.0 1 04 7~ \ 0-
10  -05 00 05 10  -10 -05 00 05 10
Pearsonr

This article is protected by copyright. All rights reserved

ecy_3382_f3.tif

Mean species abundance (%)



