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ABSTRACT: There are vast but uncharacterized microbial taxa and chemical
metabolites (that is, dark matter) across the Earth’s ecosystems. A lack of
knowledge about dark matter hinders a complete understanding of microbial
ecology and biogeochemical cycles. Here, we examine sediment bacteria and
dissolved organic matter (DOM) in 300 microcosms along experimental global
change gradients in subtropical and subarctic climate zones of China and Norway,
respectively. We develop an indicator to quantify the importance of dark matter by
comparing co-occurrence network patterns with and without dark matter in
bacterial or DOM assemblages. In both climate zones, dark matter constitutes
approximately 30−56% of bacterial taxa and DOM metabolites and changes
connectivity within bacterial and DOM assemblages by between −15.5 and +61.8%. Dark matter is generally more important for
changing network connectivity within DOM assemblages than those of microbes, especially in the subtropical zone. However, the
importance of dark matter along global change gradients is strongly correlated between bacteria and DOM and consistently
increased toward higher primary productivity because of increasing temperatures and nutrient enrichment. Our findings highlight the
importance of microbial and chemical dark matter for changing biogeochemical interactions under global change.
KEYWORDS: dark matter, microbes, dissolved organic matter, global change

■ INTRODUCTION
Global change is altering Earth’s biogeochemical cycles by
rewiring the links between microbes and organic matter.1−4

However, <1% of bacterial species have been cultured, and
fewer than half of the identifiable major bacterial lineages or
phyla include cultivated representatives.5 Similarly, a large
proportion of natural organic matter remains uncharacterized.6

For instance, in sediments and water of global rivers, only 8.7
and 9.6% of 50,942 and 48,392m/z peaks of dissolved organic
matter, measured using Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR MS), could be assigned
to identifiable molecular formulae, respectively7,8 (Table S1;
the results from this study). These unknown majorities are
colloquially called biological and chemical “dark matter,” like
the as-yet-undetected mass in the universe.9 Recent advances
in next-generation sequencing technologies and ultrahigh-
resolution mass spectrometry are now enabling new insights
into the composition of microbes10,11 and organic matter,12,13

respectively. The unknown microbial taxa likely represent
major evolutionary lines within the Tree of Life that are
expected to play key ecological roles in their communities and
environments.14 Thus, revealing the ecological roles of
biological dark matter alongside chemical dark matter can
help unravel the full extent of biogeochemical cycles and their
responses to global change. However, few approaches exist to
quantify these dark matter effects.

Here, we assessed how dark matter influenced microbial
communities and dissolved organic matter (DOM) assemb-
lages. We did so by developing an indicator to quantify the
effect of dark matter on taxa−taxa and metabolite−metabolite
interactions, respectively (Figure 1). This indicator of dark
matter effects (iDME) was based on ecological co-occurrence
networks, which are a powerful tool to understand ecological
roles and interactions within biological communities.15,16

Network metrics such as degree can then be used to describe
quantitatively the interconnectivity of microbial taxa or
metabolites within an assemblage.17,18 In each network, the
nodes represent individual microbial taxa (or metabolites), and
the edges identify the taxa−taxa (or metabolite−metabolite)
interactions. The unknown (i.e., “dark”) nodes were identified
as the taxa and metabolites that could not be assigned
microbial taxonomy or molecular formulae, respectively. We
first built two types of co-occurrence networks with either only
known nodes (“KK” networks) or both dark and known nodes
(“DK” networks) and then quantified the magnitude and
direction (i.e., positive and negative) of the iDME as
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percentage change in the network metrics such as degree17,18

between “DK” and “KK” networks. Positive and negative
iDME values indicate that dark matter enhances and reduces
network interactions within microbial communities or organic
matter assemblages, respectively. We further evaluated the
importance of bacterial and metabolite dark matter along
experimental global change gradients in two contrasting
climate zones.3,19 Specifically, we established 300 aquatic
microcosms composed of natural lake sediments and artificial
lake water at five elevations on subtropical and subarctic
mountainsides in China and Norway. At each elevation, we set
up ten nutrient levels ranging from 0 to 36 mg N L−1 in the
overlying water.19 This experiment allows us to examine the
importance of dark matter across temperature and nutrient
gradients in a simplified ecosystem under field conditions. The
sediment bacteria and DOM assemblages were examined using
high-throughput sequencing of 16S rRNA genes19 and
ultrahigh-resolution electrospray ionization FT-ICR MS,3

respectively.

With this experiment, we aimed to examine the effects of
dark matter on connectivity within bacterial or DOM
assemblages using the indicator iDME and their responses to
global change drivers. We showed that this novel indicator is
robust and sensitive to quantify the importance of dark matter
within microbes or DOM across contrasting climatic zones.
We also revealed that dark matter consistently changes
network connectivity within bacteria and DOM, and
increasingly so under global change scenarios.

■ MATERIAL AND METHODS
Experimental Design, Sample Collection, and Anal-

yses. The comparative field microcosm experiments were
conducted in a subtropical region, Laojun Mountain in China
(26.6959 N; 99.7759 E), and in a subarctic region, Balggesvarri
Mountain in Norway (69.3809 N; 20.3483 E), in September−
October and July 2013, respectively. The experimental design
was first reported by Wang et al.19 Briefly, we selected
locations with five elevations on each mountainside. The

Figure 1. Development of an indicator of dark matter effects (iDME) on microbial and metabolite networks. The indicator was developed based on
ecological co-occurrence networks. In a network, nodes represent individual microbial OTUs or organic matter metabolites (i.e., m/z peaks), and
edges identify the interactions among OTUs or metabolites. For microbes, any uncultured, unassigned, or ambiguous OTUs at the genus level were
designated as microbial dark matter. For organic matter, m/z peaks that could not be assigned to elemental formulae with a combination of C, H,
O, N, P, and S were designated as chemical dark matter. The network between all known (K, blue circles) and dark (D, coral circles) nodes for
either microbial or organic matter assemblages was considered the “Complete network.” There were then three primary procedures in developing
the iDME. First, we built two types of reduced co-occurrence networks with either only known nodes (“KK” network) or both dark and known
nodes (“DK” network). These two networks had the same number of randomly subsampled nodes from the entire microbial OTU or organic
matter metabolite pool and were further bootstrapped 100 times. Second, we quantified network interaction metrics M, such as degree for each
“KK” or “DK” network. Finally, we calculated the magnitude and direction of the iDME as the percentage change in the mean of network degree
between “KK” (MKK ) and “DK” (MDK ) networks. Positive and negative iDME values indicate that dark matter enhances and reduces the network
interactions, respectively, while an iDME of zero suggests a neutral effect. Larger absolute iDME values indicate dark matter has a greater potential
influence on the known assemblages. In dataset A and the Illustrated dataset, iDME equals −50 and +50%, indicating that dark matter reduced and
enhanced 50% of network interactions, respectively.
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elevations were 3822, 3505, 2915, 2580, and 2286 m above sea
level (m a.s.l.) on Laojun Mountain in China, and 750, 550,
350, 170, and 20 m a.s.l. on Balggesvarri Mountain in Norway.
At each elevation, we established 30 aquatic microcosms (1.5 L
bottle) composed of 15 g of sterilized lake sediments and 1.2 L
of sterilized artificial lake water, which included ten nutrient
levels of 0, 0.45, 1.80, 4.05, 7.65, 11.25, 15.75, 21.60, 28.80,
and 36.00 mg N L−1 of KNO3 in the overlying water. Surface
lake sediments less than 10 cm deep were obtained from the
center of Taihu Lake, China, and were aseptically canned per
bottle after autoclaving, as previously described in Wang et
al.19 To compensate for nitrate additions shifting stoichio-
metric ratios, KH2PO4 was added to the bottles so that the N/
P ratio of the initial overlying water was 14.93, which was
similar to the annual average ratio in Taihu Lake during 2007
(that is, 14.49). It should be noted that we used “nutrient
enrichment” to indicate a series of designed nutrient levels of
both nitrate and phosphate, the former of which was used to
represent nutrient enrichment in the statistical analyses due to
the consistent N/P ratio. There were three replicated
microcosms of each nutrient level at each elevation. The
microcosms were left in the field for 1 month, allowing
airborne microbes to freely colonize the sediments and water.
At the end of the experimental period, we aseptically

sampled the overlying water and sediments of the 300 bottles
(that is, 2 mountains × 5 elevations × 10 nutrient levels × 3
replicates) for the following analyses of bacterial communities
and DOM composition. Details on field experiments, sample
collection, environmental variables, and bacterial and DOM
analyses were described in Wang et al.19 and Hu et al.3 Briefly,
primary productivity variables such as water pH and sediment
chlorophyll a were measured for each sample. Sediment
bacteria were examined using high-throughput sequencing of
16S rRNA genes. The sequences were processed in QIIME
(v1.9),20 and operational taxonomic units (OTUs) were
defined at 97% sequence similarity. Representative sequences
from each OTU were aligned to the SILVA (v128) reference
database21 using PyNAST.22 The taxonomic identity of each
representative sequence was determined using the RDP
Classifier,23 and chloroplasts were removed. The bacterial
sequences were rarefied to 20,000 per sample.
DOM within the sediment samples was solid-phase

extracted (SPE) for FT-ICR MS measurement24 with some
modifications. Briefly, an aliquot of 0.7 g freeze-dried sediment
was sonicated with 30 mL of ultrapure water for 2 h and
centrifuged at 5000g for 20 min. To minimize cellular carbon
release during sonication, we used flow-through tap water to
maintain the consistent temperature of extracts. The sonication
treatment combined with SPE method can increase the
dissolution rates and extraction efficiency of DOC in a shorter
period and thus minimize DOC decomposition during
extraction. The extracted water was filtered through a 0.45
μm Millipore filter and further acidified to the pH of 2 using 1
M HCl. Cartridges were drained, rinsed with ultrapure water
and methanol (ULC-MS grade), and conditioned with
ultrapure water of pH 2. Calculated volumes of the extracts
were slowly passed through the cartridges based on DOC
concentration. The cartridges were rinsed with ultrapure water
of pH 2 and dried with N2 gas. Samples were finally eluted with
methanol into precombusted amber glass vials, dried with N2
gas, and stored at −20 °C until DOM analysis. Over 60% of
DOM was expected to be recovered from the SPE
procedure.24,25 Highly accurate mass measurements of DOM

were conducted using a 15 Tesla solariX XR ultrahigh-
resolution FT-ICR MS (Bruker Daltonics, Billerica, MA). The
FT-ICR MS was coupled to an electrospray ionization
interface, as demonstrated previously,26 with some modifica-
tions. Data Analysis software (Bruker Daltonics version 4.2)
was used to convert raw spectra to a list of m/z values using
FT-MS peak picker with a signal-to-noise ratio threshold set to
7 and absolute intensity threshold set to the default value of
100. Putative chemical formulae were assigned using an in-
house software Formularity,27 following the Compound
Identification Algorithm (CIA).28 Briefly, CIA adopts estab-
lished principles of formula assignment: peaks from spectra
measured by FT-ICR MS are assigned with molecular formulae
starting from the low m/z range searching CIA database, and
high m/z compounds are assigned using formula expansion
based on functional groups (e.g., CH2, H2, or O) because the
number of formula candidates increases substantially as mass
increases.27,28

We defined dark matter of bacteria as any uncultured,
unassigned, or ambiguous OTUs (hereafter, dark OTUs) at
any taxonomic level, such as the genus level. Sufficient known
and dark nodes, such as >200 per environmental condition, are
required to build the networks. At the genus level, 409 known
and 438 dark OTUs in China, and 241 known and 308 dark
OTUs in Norway were detected in more than 30% of the total
samples (Table S1). Thus, genus level was used in the
following analyses (Figure S1). We defined dark matter of
DOM as any unassigned metabolites (i.e., m/z peaks) that
could not be assigned to elemental formulae with a
combination of C, H, O, N, P, and S (hereafter, dark
metabolites or peaks).6 In summary, 2118 known and 885 dark
metabolites in China, and 1670 known and 922 dark
metabolites in Norway were detected in more than 30% of
the total samples (Table S1).
Calculating the Importance of Dark Matter. We

developed the indicator iDME to assess how dark matter
influenced microbial communities and organic matter
assemblages. The iDME quantifies the effect size of dark
matter on OTU−OTU (or metabolite−metabolite) interac-
tions between the presence and absence of dark matter.
Putative interactions between microbial OTUs (or DOM
metabolites) were quantified using co-occurrence network
analysis. There were three primary procedures in developing
the iDME (Figure 1).
First, we built two types of co-occurrence networks, that is,

“KK” and “DK” networks. In each network, nodes represent
individual bacterial OTUs or DOM metabolites, and edges
identify the interactions among OTUs or metabolites. These
two networks had an identical number of nodes that were
randomly subsampled from the whole microbial OTU or
organic matter metabolite pool and were further bootstrapped
100 times. The determination of node number could be found
in the section of Robustness test of iDME. The co-occurrence
network was inferred based on the SparCC (Sparse
Correlations for Compositional data)29 correlation matrix
constructed with the R package SpiecEasi V1.0.7.30 SparCC is
based on the log-ratio transformation, such as the ratios of the
fractions of two OTUs, which avoids the potential issue of
spurious correlations. The rarefied OTU table or normalized
metabolite table with signal intensities were used for
calculating SparCC correlations. Bacterial OTUs or DOM
metabolites observed in more than 30% of the total samples in
China or Norway were retained for correlation calculations.
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The threshold value of SparCC ρ correlations for generating
co-occurrence networks was |ρ| = 0.30 to filter the uncorrelated
or weakly correlated interactions. Second, we measured
network metrics (M), such as degree, to quantify the
connectivity for each “KK” or “DK” network with the R
package igraph V1.2.6. Degree is defined as the number of
edges that connects a focal node to other nodes.18 The OTUs
or metabolites with a higher degree are more interconnected
within an assemblage. Finally, we calculated the magnitude and
direction of the iDME, which is defined as a percentage change
in the mean value of a given network metric M between “KK”
and “DK” networks

M
M

iDME (%) 1 100DK

KK

i
k
jjjjj

y
{
zzzzz= ×

Positive and negative iDME values indicate that dark matter
enhances and reduces network interactions within microbial
communities or organic matter assemblages, respectively, while
zero iDME suggests a neutral effect. Larger absolute iDME
values indicate dark matter has a greater potential influence on
the known assemblages. It should be noted that percentage
change can be converted from another effect size measure of

log response ratio (LRR) which is usually used in non-
normalized data: percentage change (e 1) 100LRR= × .
Robustness Test of iDME. To test the robustness of the

iDME of the network degree, we determined how the network
size and the ratio of dark/known nodes influenced the
indicator performance. We randomly selected 50 samples out
of 150 samples in each region with 20 bootstraps, and the
bacterial OTUs or DOM metabolites observed in more than
30% of the total samples were retained for correlation
calculations. The 50 samples were selected so that the sample
number was consistent with the other statistical analysis (that
is, the sample number in each window of the moving-window
analysis). For each network size, we considered two ratios of
dark/known nodes, that is, the 1:1 ratio and the observed ratio
in an assemblage. For either ratio of dark/known nodes, we
reconstructed networks that contained between 100 and 200
nodes in 20-node increments for bacteria and between 100 and
1000 nodes in 100-node increments for DOM. For bacteria,
we used the maximum network size of 200 nodes, which was
based on the number of known OTUs retained in the above
bootstraps, respectively (Figure S2). For DOM, we used the
maximum size of 1000 nodes for network analysis because
there are computational limits on handling large networks
(e.g., >1000 nodes) for the robustness test. The inconsistent

Figure 2. The importance of dark matter in microbial communities and DOM assemblages under global change. We quantified the indicator of
dark matter effects (iDME) for network metric of degree on bacterial OTUs and DOM metabolites along a pH gradient in 101 windows with a
fixed size of 50 samples. We plotted iDME against pH for bacteria (a) and DOM (b) in China (red) and Norway (blue). Solid and hollow points
indicate iDME values were statistically (P ≤ 0.05) and nonstatistically (P > 0.05) different from zero, respectively. Lines are generalized additive
models with 4 knots. We also show the density distribution of iDME for bacteria (a) and DOM (b) in the two regions. The relationships between
iDME of bacteria and DOM in China (c) and Norway (d) were visualized with linear regression models, and statistically significant model fits were
indicated by solid lines (P ≤ 0.05). Dashed gray lines mark the 1:1 relationship. The mean pH in each window was indicated by dot size.
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increments between DOM and bacteria will not affect our
main conclusions as we were examining the overall trends
toward large network size. More details are shown in the
Results and Discussion section.
iDME Partitioning Analysis. We further disentangled

whether the effects of dark matter were due to changes in links
between dark−dark nodes or dark−known nodes. To do so,
we partitioned the iDME into intra-iDME and inter-iDME,
which were defined as the percentage change in the number of
dark−dark and dark−known links, respectively

M M

M M M
intra iDME(%) 100DD K K

K K K K K K

2 2

1 1 2 2 1 2

i
k
jjjjjj

y
{
zzzzzz=

+ +
×

M M

M M M
inter iDME(%) 100DK K K

K K K K K K

1 1 2

1 1 2 2 1 2

i
k
jjjjjj

y
{
zzzzzz=

+ +
×

where “K1” are the half-selected nodes from “KK” network for
“DK” network, “K2” are the remaining nodes in “KK” network,
“D” are the dark nodes for “DK” network. MKd1Kd1

+ MKd2Kd2
+

MKd1Kd2
are the total number of links in “KK” network (i.e., MKK)

in each bootstrap; MKd2Kd2
and MKd1Kd2

are the number of intra-
and inter-links in “KK” network in each bootstrap, respectively.
MDD and MDKd1

are the number of intra- and inter-links in “DK”
network in each bootstrap, respectively.
iDME along the Global Change Gradient. To study

further potential drivers of variation in the iDME of network
degree, we used the proxy variable of primary productivity (i.e.,
water pH) to represent the joint outcome of rising temperature
and nutrient enrichment that characterize global change, as
previously described in Hu et al.31 We used water pH as an
easily measured in situ proxy for primary productivity, as
opposed to laboratory-based measurements that were more
removed from the field system. This is because the primary
productivity of benthic algae (i.e., chlorophyll a) showed a
strong positive correlation (R2 = 0.65 to 0.84, P < 0.001) with
water pH at almost all nutrient levels and elevations due to
depleting dissolved CO2 upon algae growth.19 It should be
noted that we also tested sediment chlorophyll a, and it
showed similar patterns in the iDME to water pH (Figure S3).
To be consistent with our previous studies, we would like to
show the results relevant to the pH gradient in the main text.
In addition, we observed that water pH, that is, a proxy
representing the joint results of kinetic (i.e., temperature) and
potential (i.e., nutrients) energy supply, was more important
(all P ≤ 0.05; Figure 2a,b) in driving the iDME than either
type of energy gradient on its own. This result was supported
by the observation that the iDME generally did not vary with
either temperature or nutrient (most P > 0.05; Figure S4).
To test the effects of global change on the importance of

dark matter in microbial or organic matter networks, we used a
moving-window approach,32,33 as it can identify continuous
and/or sharp transitions in dark matter effects along a
continuum. We first sorted the samples along the energy
supply gradient, from minimum to maximum water pH,
separately for China and Norway. We used one-third of the
samples (that is, 50) as the window size, generating 101
windows (e.g., 1−50, 2−51, ···, 101−150 consecutive
samples). We then calculated the mean pH for each window,
resulting in a pH gradient ranging from 8.0 to 10.2 in China
(gradient across individual samples from 7.5 to 10.8) and a

gradient from 7.6 to 9.1 in Norway (full gradient from 7.4 to
10.0).31 For each window, we calculated the remaining
bacterial OTUs and DOM metabolites observed in more
than 30% of the total samples in each pH window (Figure S5).
To ensure comparable estimates of iDME across the bacterial
and DOM datasets and across the pH gradients, we
constructed each network with a consistent setting, i.e., a
network size of 200 nodes and a 1:1 ratio of dark and known
nodes. To confirm the results of 1:1 ratio of dark and known
nodes, we also considered the observed ratio for calculating the
iDME. Our results showed similar patterns in the iDME for the
two ratios of dark/known nodes along the pH gradient,
indicated by strongly positive linear regressions (R2 = 0.84 to
0.96, P < 0.001; Figure S6c,f).

■ RESULTS AND DISCUSSION
Dark matter constituted 51.7 and 56.1% of bacterial OTUs,
and 29.5 and 35.6% of DOM m/z peaks for China and
Norway, respectively (Table S1). To test the robustness of the
iDME, we determined how network size and the ratio of dark/
known nodes influenced indicator performance. We recon-
structed networks that contained between 100 and 200 nodes
in 20-node increments for bacteria and between 100 and 1000
nodes in 100-node increments for DOM. For each network
size, we considered two ratios of dark/known nodes, that is, a
1:1 ratio and the observed ratio in an assemblage. The latter
ratio values varied from 1.01 to 1.38 for bacteria and from 0.33
to 0.61 for DOM across the global change gradients (Figure
S5). In most cases, values of the iDME using the network
metric of degree slightly changed between −0.07 and 0.31
times with increasing network size (Figure S7). The changes
also progressively slowed for DOM in Norway, with an
increase of 5.26 times between 100 to 1000 nodes (Figure S6).
In addition, iDME for the two ratios of dark/known nodes
showed similar patterns with increasing network size and were
strongly positively correlated (R2 = 0.53 to 0.91, P < 0.001;
Figure S7). These results indicate that iDME was more robust
toward larger network sizes but was relatively insensitive to the
ratio of dark/known nodes, even when it differed considerably
as for DOM. Nonetheless, to ensure comparable estimates of
iDME across the bacterial and DOM datasets and the
environmental gradients, we quantified dark matter effects
with a consistent setting, i.e., a network size of 200 nodes and a
1:1 ratio of dark and known nodes.
We found that dark matter substantially changed the

network connectivity of both bacteria and DOM across
experimental global change gradients. In both study regions,
71.3 and 89.6% of iDME for network metric of degree were
significantly different from zero for bacteria and DOM. The
iDME changed by −15.5 to +15.4% and from −11.6 to +61.8%
in bacteria and DOM across the gradients, respectively (Figure
2a,b). Such large variation in the iDME values indicates that it
was sensitive to different environmental contexts (Figure 2a,b).
Interestingly, our results highlight that dark matter often
increased the network connectivity for both bacteria and
DOM, indicated by a positive iDME in 58.4 and 86.6% of
cases, respectively. Previous studies have shown that microbial
and chemical “dark matter” represents a major challenge for
the exploration of global microbiome and metabolomes.9,34 We
however have limited knowledge about the dark matter of
DOM, not mentioning the approaches to quantify these dark
matter effects. Our iDME now offers, for the first time, a way
to quantify the importance of microbial and metabolite dark
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matter under global change such as temperature increase and
nutrient enrichment. More importantly, by including a method
to calculate the effect size, iDME can be compared between
the biosphere and chemosphere and across contrasting climatic
zones.
To test the effects of global change on the importance of

dark matter in the microbial or organic matter assemblages, we
compared iDME of network degree across a pH gradient. We
used a moving-window analysis to identify continuous and/or
sharp transitions.32,33 We found that the iDME for bacteria and
DOM increased from negative to positive values along the pH
gradient of 7.5−9.5 in both regions (Figure 2a,b). This result
suggests that the dark matter can promote network
connectivity for both bacteria and DOM as primary
productivity increases. When primary productivity reached a
very high level, such as at pH > 9.5 in China, the dark matter
effects for DOM declined but remained positive (Figure 2b),
while the effects for bacteria decreased to zero and eventually
became negative (Figure 2a). This consistent pattern in dark
matter effects along the primary productivity gradient is well
supported by the strong correlation between iDME values for
bacteria and DOM with R2 of 0.52 and 0.73 for China and
Norway, respectively (P ≤ 0.001; Figure 2c,d). The positive
contribution of dark matter at higher primary productivity, to a
certain extent, agrees with a previous report showing that the
exclusion of unknown taxa could significantly reduce bacterial
network interactions in diverse extreme aquatic habitats such
as hot springs and deep sea.14

Collectively, these results highlight that dark matter is
similarly important between the biosphere and chemosphere
and across contrasting climatic zones, and these effects were
enhanced under global change scenarios of increasing temper-
atures and nutrient enrichment. This congruency would be
expected as microbes are a primary driver of ecosystem
metabolite transformations, and microbial composition is
closely associated with organic matter composition.3,35−37

Thus, as bacteria became dominated by dark matter, DOM
also became dominated by dark matter and vice versa.
We further disentangled whether the effects of dark matter

were due to changes in links between dark−dark nodes or
dark−known nodes. To do so, we partitioned the iDME into
intra-iDME and inter-iDME, which were defined as the
percentage change in the number of dark−-dark and dark−

known links, respectively. We found that for both bacteria and
DOM, the intra-iDME was larger than the inter-iDME toward
higher primary productivity, with the highest differences at pH
9.4−9.5 in China and 8.6−9.1 in Norway (Figure 3). These
results indicate that the dark matter created its own distinct
clusters (i.e., dark−dark links) and was also intermixed with
known nodes (i.e., dark−known links), the former of which
were consistent between bacteria and DOM and became more
dominant toward higher primary productivity. Given the
importance of such self-organized clusters among dark matter
for network interactions in high primary productivity environ-
ments, the structure and functions of these dark matter clusters
must be better characterized, particularly under future global
change scenarios.
Notably, dark matter was generally more important for

organic matter than bacteria and more so in the subtropical
region. Specifically, values for the iDME of network degree
were larger (ANOVA test, P < 0.001 for both regions) and
more positive for DOM than bacteria, with a mean value of
+15.0 and +2.1%, respectively (Figure 2a,b). The larger effects
of dark matter on DOM were stronger in the subtropical
region, supported by the higher linear regression slope of 2.17
between the iDME of bacteria and DOM than in the subarctic
region (Figure 2c,d). This difference between the importance
of dark matter for DOM versus bacteria also increased in
magnitude along the global change gradients, that is, with pH,
in the subtropical region (Figure S8). We offer three
nonmutually exclusive explanations for these results. First,
organic matter assemblages are mainly processed by microbes
and thus change faster than microbial community composi-
tion.38 The resulting transformations of chemical dark matter
could then result in more connections among metabolites and
larger iDME. Second, microbial communities are highly
functionally redundant,39 so the network connections of dark
matter species can be replaced by other counterparts, which
are sometimes “known”. For organic matter, however, the
linkages between metabolites potentially reflect molecular
transformations that occur along conserved enzymatic path-
ways, and thus they are less replaceable if the metabolites
involved in these transformations are dark matter. Finally,
these results may be due to the methodological differences in
levels of classification or taxonomic groups for defining dark
matter. For instance, we could define the dark matter of

Figure 3. The partitioning of indicator of dark matter effects (iDME) within microbial and DOM assemblages under global change. We partitioned
iDME into intra- and inter-iDME based on dark−dark links (solid lines) and dark−known links (dotted lines) along a pH gradient in 101 windows
with a fixed size of 50 samples. We plotted intra- and inter-iDME against pH for bacteria (a) and DOM (b) in China (red) and Norway (blue).
Lines are generalized additive models with 4 knots.
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bacteria at either OTU or other broad taxonomic levels and
the dark matter of DOM at different mass accuracy, e.g., 15
Tesla versus 21 Tesla FT-ICR MS. Further, there is a
challenging situation for both microbes and DOM as there
may be numerous bacterial strains within a defined OTU or
tens of molecules with a defined formula.
Our findings have important implications for understanding

the full extent of biogeochemical cycles under global change.
We found that dark matter consistently changed the
connectivity of microbial communities and the ecosystem
metabolites they interact with, and increasingly so under global
change scenarios. Thus, efforts to measure and predict
biogeochemical cycles, especially under global change, are
incomplete without revealing the ecological roles of microbial
and chemical dark matter. At best, these efforts capture about
two-thirds of the relevant ecological interactions. The role of
chemical dark matter may be particularly challenging to reveal
due to the faster turnover of DOM assemblages and the strong
variation in dark matter effects of DOM across climate zones.
It should be noted that microbial and organic matter data may
be biased by their semi-quantitative nature due to the applied
extraction methods and available analytical procedures.
Further, some dark matter of bacteria and DOM are poorly
captured by our approaches. For instance, a portion (10−40%)
of DOM metabolites could leach from the solid-phase
extracted processes24,25 and should contain dark matter
important for our understanding of microbial ecology and
biogeochemical cycles. More advanced techniques like 21
Tesla FT-ICR MS and single-cell genetic analysis are now
needed to help shine light on both the uncharacterized and
uncovered chemical and microbial dark matter. Future studies
on the indicator iDME is encouraged to examine how the
degree to which microbial taxa and molecular formulae are
identified may influence the actual effects of dark matter on
microbial and DOM assemblages, largely because this
identification is far from complete and unevenly distributed
globally.
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