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Summary

Species attributes such as abundance and traits are
important determinant components for ecosystem func-
tions (EFs), while their influences on distinct functions
remain understudied. Here, we linked 753 treehole bac-
terial communities to two distinct types of EFs, includ-
ing the three broad functions of respiration, metabolic
activity and cell yield and the four narrow functions
related to specific organic matter degradation. Towards
high occurrence of phylotypes or traits, the dependency
of broad EFs on species abundance or traits increased,
whereas the dependency of narrow functions
decreased. Among the immense number of bacterial
phylotypes, the relative abundance of only 5.05% of
phylotypes (that is, 542 phylotypes), but accounting for
68.60% of total abundance, were significantly related to
both distinct EFs ranging from 2 to 7 functions, the level
of which was used to quantify species functional gener-
ality. Such ‘low species number, high relative abun-
dance and strong functional generality’ features for
these 542 phylotypes could be further potentially linked
to their enriched functional genes involved in cellular
processes including nutrient acquisition, environmental
adaptation and cell growth. Our study highlights the key
role of a handful of microbial species in determining
and anticipating distinct EFs by explicitly considering
their abundance and trait attributes.

Introduction

One of the most important questions in microbial ecology
is how to resolve the relationship between community

structure and ecosystem functions (EFs) (Vitousek and
Hooper, 1994). The community-level diversity metrics
including species richness and community composition
are proposed to affect EFs such as the bacterial species
composition for community respiration (Bell et al., 2005)
and the denitrifier community for the rates of denitrifica-
tion and N2O production (Cavigelli and Robertson, 2000).
In addition, the species-level attributes such as species
abundance, identity and traits also play important roles in
determining EFs. A skewed species abundance distribu-
tion shows that a few of species are very abundant
whereas a large number are represented by low-
abundance individuals, and the pattern is commonly
observed in microbial communities across various habi-
tats (Nemergut et al., 2011; Pedr�os-Ali�o, 2012; Lynch
and Neufeld, 2015). Such a pattern indicates that not all
species contributes equally to the variations in EFs
(Banerjee et al., 2018), and species abundance could be
associated with their functional role in microbial commu-
nities. For example, the abundant and rare species in
treehole bacterial communities are involved in two funda-
mentally different types of EFs, that is, the broad
(e.g., respiration and ATP production) and narrow
(e.g., the degradation of complex substrates) functions
respectively (Rivett and Bell, 2018). Further, species
identity and traits, rather than species richness, are also
pivotal for narrow EFs such as the degradation rate of
chitin being determined by the presence or absence
of Agrobacterium-related species (Peter et al., 2011).
However, the quantitative relationships between EFs and
the species attributes, including species abundance or
traits, remains understudied, especially regarding these
distinct types of EFs. Specifically, to what extent do these
distinct EFs depend on species attributes, and are there
predictable patterns in such a dependency along the gra-
dient of the occurrence of species attributes? Are there
differentiated performances among species in terms of
their contributions to EFs? If so, what is the genomic
basis in explaining the differentiated performances?

To answer these questions, we reanalysed the com-
prehensive dataset from Rivett and Bell (2018) consisting
of 753 bacterial communities from rainwater-filled
treeholes and two distinct EFs associated with leaf litter
degradation (Fig. 1 and Supporting Information). Briefly,
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we obtained 10,729 phylotypes at the 97% 16S rRNA
gene sequence similarity level. We further retrieved func-
tional traits for 5060 phylotypes regarding genomic signa-
tures and functional genes of Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthology (KO) by map-
ping the representative sequence against the prokaryotic
genomes in the RefSeq database (O’Leary et al., 2015).
The community-level weighted means (CWM) of each
KO (that is, KOCWM) was calculated for each sample as
the mean of trait values present in the community
weighted by the relative abundance of the corresponding
phylotypes (Garnier et al., 2004). For EFs, there were
seven measures grouped into the broad and narrow EFs
according to Rivett and Bell (2018): cell respiration, cell
yields and metabolic potential were considered as broad
EFs; the activities of four enzymes associated with
organic matter degradation were considered as narrow
EFs, including β-glucosidase (breaks down cellulose),
β-chitinase (breaks down chitin), phosphatase (breaks
down organic phosphates) and xylosidase (cleaves
xylose, a component of hemicelluloses; Table S1). EFs
could be viewed as a continuum of functions from rela-
tively narrow to relatively broad, and those located
towards the two ends of the spectrum are selected to
capture the distinct or contrasting features in microbes
associated with fundamentally different types of EFs. Our
selection of EFs is consistent with the classification of
EF, namely, the narrow EFs refer to the processes
that involve a specific physiological pathway, such as
litter decomposition, which are performed by a

phylogenetically constrained group of organisms,
whereas the broad EFs refer to the processes that
involve multiple distinct steps, such as soil respiration,
which are carried out by a wide range of organisms
(Schimel and Schaeffer, 2012; Fierer, 2017).

Results and discussion

These EFs showed significant associations with the rela-
tive abundance of individual phylotype and also with
KOCWM (P < 0.05, F-test, Fig. 2). We interpreted such
associations as the dependency of EFs on species abun-
dance or KOCWM and quantified them with the coefficient
of linear regression (referred to as effect size hereafter).
KOCWM had a larger effect size than species abundance
for broad EFs, but had a smaller effect size for narrow
EFs (Fig. 2C). Our results not only emphasized the
importance of species abundance for EFs, being consis-
tent with previous findings (Rivett and Bell, 2018), but
also revealed that the traits had stronger association with
broad but not narrow functions when compared with spe-
cies abundance.

Further, we found that the dependency of EFs on spe-
cies abundance or KOCWM was related to the occurrence
of species attributes, and such a relationship showed
contrasting patterns for two distinct types of functions
(Fig. 2A and B). For instance, the effect size of species
abundance or KOCWM for broad EFs significantly
(P < 0.01, Spearman rank test) increased towards higher
occurrence of phylotypes or KOs (upper panels in

Fig. 1. The framework of the experimental design. We explored 753 bacterial communities with two fundamentally different types of ecosystem
functions, including the broad (cell respiration, cell yields and ATP production) and narrow functions (the activities of four enzymes associated
with organic matter degradation, Table S1). The study has three main aims in: (i) determining the relationships between the occurrence of spe-
cies attributes and the dependence of different types of ecosystem functions on them, (ii) identifying the differentiated performances among phy-
lotypes in terms of their contributions to distinct EFs and (iii) exploring the genomic basis in explaining the differentiated performances. EFs,
ecosystem functions; KO, Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology. KOCWM, the community-level weighted means of KO.
[Color figure can be viewed at wileyonlinelibrary.com]
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Fig. 2A and B, and Figs. S1 and S2). For narrow func-
tions (lower panels in Fig. 2A and B), the effect size of
species abundance or KOCWM showed significant
(P < 0.01, Spearman rank test) decreasing trends with
increasing occurrence of phylotypes or KOs. Such
patterns were further supported by the same analyses
performed on a subset of 1000 phylotypes (100 permu-
tations), which consistently showed significant associ-
ations between the different types of EFs and species
attributes (Fig. S3).

The contrasting patterns indicate that different types of
EFs are closely related to the occurrence of species attri-
butes, which agrees with previous findings regarding spe-
cies abundance and EFs (Fuhrman, 2009; Jousset
et al., 2017). For example, the abundant bacterial groups
contribute mainly to broad functions, such as bacterial
biomass production (Cottrell and David, 2003) and the
flux of dissolved organic matter being predominantly
affected by an abundant marine bacteria group SAR11
(Malmstrom et al., 2005). However, the rare phylotypes
have been proposed to play an important role in deter-
mining EFs, including the degradation rates of chitin and
cellulose in a manipulative experiment of aquatic bacter-
ioplankton (Peter et al., 2011), the activities of four extra-
cellular enzymes in soil (Chen et al., 2020), and the
stability of crop mycobiomes (Xiong et al., 2021). Such
effects of rare phylotypes on EFs may be explained by
three possible mechanisms: stronger phylotypes activity,

increased functional diversity and beneficial influences
on the abundant phylotypes (Jousset et al., 2017).

These findings could be summarized by a framework
that illustrates the relationships between species attri-
butes and EFs in terms of the occurrence of species and
their traits (Fig. 2D): the dependency of broad EFs on
species abundance or KOCWM is positively related to the
occurrence of species or functional traits, whereas
the dependency of narrow EFs increases towards high
rarity of species or functional traits. Species with large
occurrences likely adapt to a wide range of environments
and enable the performance of broad functions, such as
respiration or ATP production, whereas rare species may
specialize in particular environments with their phyloge-
netically conserved features, such as limiting resource or
strong competition through the degradation of specific
compounds. Thus, not all species contribute equally to a
single function (Banerjee et al., 2018), which is partly due
to its specific trade-offs in the ability to perform different
functions (Peter et al., 2011).

Based on the associations between species abun-
dance and EFs, we found that some species showed sig-
nificant linear regressions with more than one function
(Figs. 3A and S4). Such a capability was defined as spe-
cies functional generality, the level of which was quanti-
fied as the cumulative number of EFs showing significant
(P < 0.05, F statistics) relations with species abundance.
When both types of functions were considered (Fig. S4),

Fig. 2. The dependency of ecosystem functions on species abundance and traits was related to the occurrence of phylotypes and traits. The lin-
ear regression model was used to fit the relationships between species abundance or traits (KOCWM) and the EFs (for details about the model,
see the Supporting Information). Such relationships were interpreted as the dependency of a specific function on species abundance or KOCWM

and quantified with the correlation coefficient of the regression (R2, hereafter referred to as effect size). These effect sizes were then plotted
against the occurrence of phylotypes (A) or KO (B). The effect sizes of species abundance and KOCWM for different EFs varied significantly
(Wilcoxon test) (C). *** P < 0.001, ** P < 0.01, * P < 0.05. Based on these analyses, we conceptually summarized the relationships between EFs
and the phylotypes in terms of the species and trait occurrences (D). [Color figure can be viewed at wileyonlinelibrary.com]
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Fig. 3. The species functional generality for two types of ecosystem functions and their relationships with species abundance and species num-
ber. Species functional generality was quantified as the cumulative number of the functions showing significant (P < 0.05) relationships with the
abundance of a phylotype. For each phylotypes, functional generality for both types of EFs were linked (A) and compared (B). The associations
between phylotypes (blue points) and both types of functions (the red and green squares) were illustrated by the network where the edges repre-
sent the significant associations. In the left panel of (A), the phylotypes showing the same functional generality (the digits) for broad functions
were illustrated with the same magnitude of blue colour, whereas in the right panel of (A), the phylotypes with the same colour schemes were
rearranged by the functional generality for the narrow functions. An alluvial plot illustrating these associations was shown in Fig. S4. In (B), the
curves represent the change of species relative abundance and their number along functional generality for each specific EF types. A conceptual
diagram about the relationships was shown in (C). A detailed explanation of the diagram was provided in the main text. [Color figure can be
viewed at wileyonlinelibrary.com]
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0.53% of phylotypes (i.e., 57 phylotypes) showed a func-
tional generality score over five, and 1.96% (i.e., 210 phy-
lotypes) had a generality score over four, while 64.20%
showed zero functional generality. For the broad EFs,
4.27% of phylotypes (i.e., 458 phylotypes) but accounting
for 64.60% of total abundance, were associated with the
highest levels of functional generality (that is, = 3)
(Fig. 3A and B). Such a high functional generality for
broad functions is likely to be consistent with previous lit-
eratures showing that approximately 20% of species
accounting for 80% of the total community abundance
are responsible for 80% of the metabolic energy flux of
the ecosystem (Dejonghe et al., 2001; De Vrieze and
Verstraete, 2016). For the narrow EFs, fewer phylotypes
(0.45%) but with a relatively larger abundance showed
high functional generality values when compared with
broad functions (Fig. 3B). For example, the average
abundance of the phylotypes with functional generality
(≥ 1) for narrow EFs was up to four times higher than that
for broad EFs (Table S2). Specifically, only 48 phylotypes
but accounting for 12.10% of total abundance were asso-
ciated with the highest functional generality (that is, ≥ 3)
for narrow EFs (Fig. 3A and B). Such distinct patterns
indicate that the functional generality for narrow functions
depends on more species abundance than species num-
ber, whereas species number has a greater effect on the
functional generality for broad EFs (Fig. 3C). The high
functional generality for narrow EFs suggests that the
growth of these species is closely associated with multi-
ple narrow functions, including their participation in the
functions or their utilization of intermediate substrates.
Few species can perform multiple narrow functions simul-
taneously due to great metabolic requirements. There-
fore, it is very likely that the resource, derived from the
degradation of specific complex substrates, provides
great advantages to their growth.

Moreover, we found that a few species showed high
predictive power for EFs regardless of the type of func-
tions (that is, broad or narrow EF). All phylotypes could
be further classified into four groups based on their rela-
tionships with the two types of EFs, that is: (i and ii) EF
specialists (EFS) significantly associated with broad or
narrow functions (that is, EFS-B and EFS-N respectively),
(iii) EF generalists significantly associated with both types
of functions and finally (iv) EF neutralists showing non-
significant relations with all functions (Fig. S5). As
expected, these groups exhibited different performances
in predicting EFs when using a random forest model
(Breiman, 2001) with species abundance or species rich-
ness as explanatory variables. For instance, regarding
species abundance or KOCWM, the EF specialists for both
types of functions showed better predictions of the broad
and narrow EFs respectively (Fig. 4A and B). Interest-
ingly, species richness of EFS-N better predicted the

narrow than broad functions, particularly for the cellulose
utilization rate with an average coefficient of 0.4
(Fig. 4C). Unexpectedly, the EF generalists were gener-
ally better at predicting both types of EFs than the EF
specialists with respect to their species abundance or
KOCWM (Fig. 4A and B). Notably, the EF generalists con-
sisted of a relatively small fraction of phylotypes
(i.e., 5.05%, 542 phylotypes) but had the greatest relative
abundance of 68.60% (Fig. S5B). A similar phenomenon
is observed for soil bacteria, in which 2% of species
account for nearly half communities worldwide (Delgado-
Baquerizo et al., 2018). The characteristics of the gener-
alists could be summarized as ‘low species number, high
relative abundance and strong functional generality’. This
indicates that a few species but with high abundance are
associated with EFs, however, the genomic basis under-
lying these patterns are understudied.

We further performed comparative genomic analysis
among the above three species groups (that is, the EF
generalist and two EF specialist groups) to explore the
differences in their genomic signatures and genes
enriched or depleted in cellular processes. The genomic
signatures like genome size, the number of protein-
coding genes and GC content were significantly higher in
EF generalists than those in the other two groups
(P < 0.05, Wilcoxon test; Fig. S6A). Larger-genome EF
generalists are usually enriched in the regulation and
secondary metabolism genes which help the organisms
to take up nutrients and cope with environmental stress
(Konstantinidis and Tiedje, 2004); thus, these generalists
are likely to have larger environmental range sizes
(i.e., the breadth of habitats) than other organisms,
resulting in greater ubiquity as observed in soil bacteria
(Barber�an et al., 2014). For functional genes, the Shan-
non index of KOs was significantly higher for the EF gen-
eralists than for the specialists (P < 0.05, Wilcoxon test,
Fig. S6A). Furthermore, regarding the higher-level KEGG
pathways (Kanehisa et al., 2016), there were significant
differences (P < 0.05, Wilcoxon test) among the three
species groups in KO copy numbers of numerous func-
tional pathways (Fig. 4D), which were summarized into
three categories: efficient nutrient acquisition, diverse
habitat adaptation and fast growth strategy.

i. Efficient nutrient acquisition: For example, compared
with the EF specialists, the generalists were signifi-
cantly enriched in genes involved in flagella assembly
and ATP binding cassette transporter (P < 0.05,
Wilcoxon test; Fig. S7). Such enriched genes relevant
to bacterial motility and substrate-specific transport
allow generalists to take up the transient nutrient in the
environment (Smriga et al., 2016). Among the general-
ists, there were also significantly enriched gene
responsible for the degradation of fatty acids (P < 0.05;
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Fig. 4D) which are essential components of mem-
branes and an important source of metabolic energy
for all organisms (Fujita et al., 2007).

ii. Diverse habitat adaptation: Compared with the EF
specialists, the generalists showed a higher abun-
dance of the genes responsible for biofilm formation
(Figs. 3D and S9), which concurs with the most abun-
dant genus Pseudomonas (Fig. S6B) generally capa-
ble of forming biofilms (Mas�ak et al., 2014). Biofilm
formation may provide microbes with numerous

ecological advantages, including the resistance to
environmental disturbance, metabolic cooperation
among species in close proximity and the acquisition
of novel genetic traits from the surroundings (Davey
and O’toole, 2000). Among the EF specialists, the
EFS-N species harboured more genes involved in
xenobiotics metabolism, such as benzoate degrada-
tion (Figs. 4D and S7), which agrees with the top two
taxa of Sphingomonas and Arthrobacter genera (col-
lectively accounting for �52.50% of total abundance,

Fig. 4. Prediction of ecosystem functions using the attributes of four species groups and their functional difference. These four groups were EF
specialists significantly associated with broad (i) or narrow (ii) functions, (iii) EF generalists and finally (iv) EF neutralists (Fig. S5). The ecosystem
functions were predicted using the attributes of each group, including species abundance (A), KOCWM (B) and species richness (C) with a random
forest model. The predictive power of the model regarding these attributes was quantified with the Spearman rank correlation coefficient between
the predicted and observed values for each function. The criterion for species classification and the procedure for calculating the correlation coef-
ficient were detailed in the Supporting Information. The above analysis was repeated 100 times, and only the significant coefficients were illus-
trated. The differences in correlation coefficients between groups was tested with Wilcoxon test. *** P < 0.001, ** P < 0.01, * P < 0.05. The
pathways with KO copy number showing a significant difference between any pair of species groups (Wilcoxon test) were shown (D). All func-
tional differences were conceptually summarized in (E). For better visualization, the EF neutralist species were not shown. [Color figure can be
viewed at wileyonlinelibrary.com]
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Fig. S6B) known to have a wide range of xenobiotic-
biodegradative abilities (Vandera et al., 2015; Rav-
intheran et al., 2019). These xenobiotic-related genes
potentially enhance the adaptation of these specialists
to habitats containing toxic compounds.

iii. Fast growth strategy: Between the EF generalists and
specialists, we found a non-significant difference in
the number of 16S rRNA genes, an estimate for rRNA
operon copy number (Fig. S6A), which is usually
linked to the maximum growth rate of a bacterium
(Roller et al., 2016). However, the generalists showed
significantly enriched genes involved in nucleotide
metabolism, DNA replication and repair and amino
acid biosynthesis (Fig. 4D). The associations with
these genes concur with the scenario in which the
generalists use a fast growth strategy requiring more
energy allocated to the manufacture of amino acids
and the regulation for DNA biosynthesis (Molenaar
et al., 2009).

In conclusion, our results showed that only a few spe-
cies but dominating the bacterial communities were sig-
nificantly associated with the two fundamentally different
types of EFs, and their relative abundance and traits well
predicted EFs. These features could be summarized as
‘low species number, high relative abundance and strong
functional generality’. Such distinctive performance of
these species may be relevant to the predominance
of their functional genes associated with efficient nutrient
acquisition, diverse habitat adaptation and fast growth
strategy. Here our study sheds light on the importance of
a relatively few dominant microbial species in the predic-
tion of distinct EFs based on species attributes, and pro-
vides the understanding of their characteristics
leveraging available genomic data.

Experimental procedures

Sequence analyses

The 16S rRNA gene sequence for 753 aquatic samples
was downloaded from NCBI SRA database
(SRR7136127–SRR7136875 under the accession num-
ber PRJNA453972). The V4 region of 16S rRNA gene
was amplified with using the primers 515f/806r and then
sequenced on the Illumina MiSeq (250-bp paired end)
platform. It should be noted that we did not consider fun-
gal communities as fungal activity was eliminated by
supplementing fungicide (cycloheximide) during experi-
mental incubations. The bacterial dataset was re-
analysed using our custom pipeline. Briefly, FastQC
v0.11.8 was used to check the Phred quality of the
sequence and the frequency of potentially contaminated
adapters (Andrews, 2010). The sequence with the
average Phred quality lower than 25 within a 4-bp sliding

window, was then trimmed using the paired end mode of
Trimmomatic v0.39 and the resulting reads shorter than
250 bp were discarded (Bolger et al., 2014). Due to a
large amount of memory required by QIIME 2 program
(Bolyen et al., 2019), the clustering and selection of oper-
ational taxonomic units and taxonomy assignment were
achieved using the script ‘pick_open_reference_otus.py’
in QIIME v1.9.1 (Caporaso et al., 2010). In QIIME1,
uclust (Edgar, 2010), a high-speed and low memory
usage clustering method, was used to cluster the
sequence with the similarity threshold being 97%, a fre-
quently used cutoff to group microbes into species
(Yarza et al., 2014), which we refer to as ‘phylotypes’ in
the text. For each phylotype, taxonomy assignment was
also performed using uclust, which aligns a query
sequence against Greengene database v13.8 (DeSantis
et al., 2006), then retrieves at least three hits from the
database for the query, and finally assigns the most spe-
cific taxonomic label of the hit to the query. The phy-
lotypes were rarefied with the minimum sequence
abundance of all samples (5660 sequence) using the
‘rrarefy’ method in VEGAN package (Dixon, 2003). To
avoid the potential sequencing error and the bias caused
by the uneven sequencing efforts, the phylotypes with
the total abundance across all samples less than three
and the number of occurring samples less than two were
discarded, resulting in 10,726 phylotypes from all sam-
ples. A relatively stringent filter criteria (at least 100 indi-
vidual across all samples and occurred only in at least
10 samples) mentioned in the original paper (Rivett and
Bell, 2018) was not applied here in order to capture more
phylotypes in communities. In addition, we perform addi-
tional sequence analysis using 100% similarity threshold
and found that Shannon diversity estimated from 97%
showed strong correlation with the index based on 100%
(Spearman rho = 0.90, P = 0, Fig. S8), indicating mar-
ginal effects of similarity threshold on the estimation of
species diversity.

Functional annotation

We mapped the phylotypes with the corresponding
microbial organism whose genome sequence is available
through the alignment of their 16S rRNA genes. Although
the single marker gene alignment-based method is con-
troversial in the term of accuracy, similar methods have
been widely used (Barber�an et al., 2014). In brief, bacte-
rial and archaeal genome files (21,788 species with
unique taxa identity) in GBK format were downloaded
from the NCBI RefSeq database (date: April 2019). For
each organism, the 16S rRNA gene greater than 1000 bp
was extracted and pooled together as the reference data-
base. When multiple copies of 16S rRNA genes are
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present, the longest one was selected as the representa-
tive for the species. The sequence of phylotypes was
aligned against the above reference database using
BLASTN program with the e-value being ‘1e-5’. The hit
with sequence identity larger than 97% and the propor-
tion of the alignment length larger than 80% of the query
length was considered as the closely related representa-
tive of the query phylotypes. Among all 10,729 phy-
lotypes, 5060 were successfully linked to 1282 unique
reference genomes (Table S3), whereas the remaining
5669 phylotypes had no alignments in the NCBI prokary-
ote RefSeq database or the alignments that could not
meet the stringent criteria. No closely related genomic
sequence was retrieved for more than half of the phy-
lotypes, partly because a high proportion of bacteria and
archaea across most biomes remains uncultured and not
represented in the database (Steen et al., 2019). For the
phylotypes (N = 5060) with matched genome sequence,
several genomic signatures, including genome size, GC
content, the number of protein-coding genes, total genes
and 16S rRNA gene were calculated. To infer metabolic
potential for these phylotypes, the amino acid sequence
of the protein-coding genes in each genome were aligned
against the orthologue in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (Kanehisa
et al., 2016) (date: 2017-09) using DIAMOND v0.8.22
(Buchfink et al., 2015) with e-value of 1e-5. The top
10 hits in the alignment were considered as the candi-
dates, and the consensus KO was then determined as
the final annotation. When more than one KOs present
among these hits, the consensus KO was assigned to
the query by the majority rule. According to the links
between KO and KEGG pathway (Kanehisa et al., 2016),
the abundance of each pathway was calculated as the
total number of KOs present in the pathway for each spe-
cies. Unless stated explicitly, default parameters are
used in all programs abovementioned.
The functional prediction approaches have been con-

troversially discussed regarding the representativeness
of real functional potential of microbial community. We
considered that our approach is valid and valuable, espe-
cially when genome sequences for most microbes are
hardly accessible by cultivation technology currently
available, and provided five reasonings as below: (i) The
functional prediction approaches with genome-mapping
are extensively used and similar principles have been
implemented in numerous tools such as PICRUST
(Langille et al., 2013; Douglas et al., 2020). These tools
are still under heavy development with very recent
updates, and very popularly referred in literature.
(ii) Compared with the available tools, we applied a rela-
tively more conserved mapping approach with a stringent
criterion (> 97% sequence identity and > 80% alignment
length), but without any extrapolations of functions for

other unaligned phylotypes. For instance, PICRUST
depends on the phylogenetic proximity between refer-
ence genome and environmental strains to predict func-
tional composition for all phylotypes (Langille et al.,
2013). (iii) The validity of genome-mapping approach is
well supported by previous studies. For example, through
matching 16S rRNA sequences against the RDP database
derived from bacterial genomes, soil bacteria with larger
genomes and more metabolic versatility are more likely to
have larger environmental and geographical distributions
(Barber�an et al., 2014). (iv) The subset of phylotypes with
available genomes in our study well represented the whole
microbial community. We found that 5060 phylotypes with
available genomes accounted for 96.1% of the total abun-
dance, and their Shannon diversity strongly correlated with
that of all phylotypes (Fig. S9). (v) The genomic features
considered in this study, such as genomic size, the count
of CDS and GC content, are not available in other pro-
grams like PICRUST.

Statistical analyses

Three datasets were used in statistical analyses: (i) 10,729
phylotypes from 753 samples after filtering (see
Section Sequence analyses); (ii) the 5060 phylotypes with
genome sequence available, the corresponding genomic
signatures and the KO copy number (see Section Functional
annotation); (iii) seven functional measurements across all
753 samples from the original Supporting Information (Rivett
and Bell, 2018). The overview of statistical analyses was
summarized in Fig. 1.

(i) The relationships between functional measures and
species abundance or genomic traits across samples.

Two species attributes are focused in the study,
namely species abundance and genomic trait represen-
ted as KOs. To test the relationship between genomic
traits and measured functions, the community weighted
level mean values of KOs (KOCWM) is calculated for each
sample using the ‘functcomp’ method in FD package
(Laliberté and Legendre, 2010). A linear regression
model was used to fit the relationship between each
functional measure and species abundance or KOCWM in
all samples. For species abundance, the formula y¼
b1log10 xþ1ð Þþb0 was applied, whereas another formula
y¼b1xþb0 was used for KOCWM, in which y is a func-
tional measure and x is the relative abundance of phy-
lotypes or KOCWM of samples. The coefficient (R2) of the
linear regression were used to represent the dependence
of EF on species abundance or genomic trait.

(ii) The relationships between coefficient and the
occurrence of species or trait.

For each phylotype and KO gene family, the R2 of lin-
ear regression for different functional measures was
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calculated and referred to as the effect size. Then, spe-
cies occurrence was defined as the number of samples
containing the phylotype divided by the number of sam-
ples. KO occurrence was defined as the total number of
times KO present in phylotypes divided by the total phy-
lotype number. Linear regression and quadratic regres-
sion are selected using the Akaike information criterion
(AIC) to fit the relationship between the effect size and
the occurrence of phylotypes or traits.

In addition, a resampling analysis was performed to test
the consistency of the correlation between the effect size
and species occurrence, or the effect size and KO occur-
rence. Firstly, a subset of 1000 phylotypes was randomly
selected from phylotypes in all samples. For species abun-
dance, the corresponding effect size of these phylotypes
and their occurrence were calculated. For genomic traits,
KOCWM was calculated using the abundance and KO copy
number of the randomly selected 1000 phylotypes, rather
than all species. Secondly, the Spearman’s rho correlation
between the effect size and the occurrence of species and
traits was then calculated respectively. Finally, these pro-
cedures were replicated 100 times and estimated the dis-
tribution of Spearman’s rho correlation.

Species occurrence was strongly correlated with their
mean relative abundance across samples (Fig. S10), as
expected. The relationship between its occurrence (pres-
ence or absence data) and EFs across samples cannot
be quantified due to the inconsistency of variable types
(0/1 and continuous respectively). Instead, we evaluated
the correlations between relative species abundance and
fundamentally different EFs across samples using the lin-
ear regression model and found that towards high spe-
cies occurrence, the dependency of EFs on species
abundance exhibited contrasting trends regarding differ-
ent types of EFs. These results highlight the differentiat-
ing roles of species along the occurrence gradient in
explaining the variation of EF.

(iii) The network illustration of the association between
species and ecosystem functioning, and the classifica-
tion of species.

The associations between species abundance and all
EFs in the study were illustrated with an undirected net-
work implemented in Cytoscape v3.8.0 (Shannon
et al., 2003). The nodes in the network are phylotypes
and seven functions, and edges between phylotypes and
functions are significant association between species
abundance and both types of functions. Based on the
significance of these associations and function category,
the phylotypes were classified into four groups: (i and ii)
EF specialists (EFS) significantly associating with broad
or narrow functions (that is, EFS-B and EFS-N respec-
tively), (iii) EF generalists significantly associating with
both functions, and finally (iv) EF neutralists showing
non-significant relations with any function.

(iv) Prediction of EF based on classified species.
The random forest (RF) regression model (Breiman,

2001) was used to predict different types of EFs. The RF
model could incorporate a large number of predictors, like
the abundance of numerous phylotypes or genomic traits
in our study. The procedure of constructing the model
was described as follows: (i) 60% of the samples was
randomly selected as the training dataset and the
remaining 40% as the test dataset. (ii) The RF model for
each function was generated using species abundance
or KOCWM for each of four species groups based on the
training dataset. When the number of predictors (phy-
lotypes or KOs) in groups is large, the maximum of 1000
items were randomly selected from the group as the rep-
resentative predictors in each run to save the running
time. (iii) The fitted RF model was used to predict the EF
using the test dataset; and (iv) the spearman rank corre-
lation coefficient between the observed and predicted
values of EF was calculated. These four steps were repli-
cated 100 times to evaluate the distribution of the correla-
tion coefficient. The RF algorithm implemented in the
randomForest package was applied to construct the
model (Liaw and Wiener, 2002). All reported results
about the RF model were trained with 1000 trees.
Besides species abundance or KOCWM, species richness
of these four species groups was also utilized to predict
EFs using the same procedure. Species richness were
calculated using the methods in the VEGAN package
(Dixon, 2003).

(v) Difference in genomic signatures and functional
pathway between species groups.

When the corresponding genome sequence for the
representative phylotypes was retrieved using the single-
marker gene mapping method, a common case occurs
that more than one species share the same genome.
However, our stringent criteria (≥ 97% similarity and
≥ 80% alignment length of 16S rRNA gene sequence)
ensures that the matched genome sequence is a reliable
proxy for the representative species. Thus, the replicate
genome was not excluded in the downstream analysis.

For the phylotypes with genome available, genomic
signatures, including genome size, GC content, CDS
count, all gene count and 16S rRNA gene count were
estimated (see Section Sequence analyses). The
Wilcoxon test for two independent samples was used to
compare the difference of mean values in each genomic
signature between any two groups among the three.
KEGG pathway with significantly higher number of KOs
in each group are screened out in a similar way. Briefly,
for each phylotype, the total KO copy number in each
pathway at the lowest level were counted as the relative
abundance of the pathway according to the hierarchical
organization in KEGG pathway (Kanehisa et al., 2016).
Then, for each pathway, the difference in the relative
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abundance between any two groups among the three
was checked using the Wilcoxon test at both sides. Then
pathways with the P values adjusted by the Holm-
Bonferroni method less than 0.05 were discussed in the
study.
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