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A B S T R A C T   

Lake level or water depth are key physical variables known to respond dramatically to climate change, especially 
in arid regions, and their fluctuations exert substantial influences on lake biodiversity and ecosystem functioning. 
However, it is unclear how multiple ecosystem functions (i.e., ecosystem multifunctionality, EMF) respond to 
changes in water depth and how aquatic community attributes, such as species richness, evenness and com-
munity compositions, are linked to EMF along water depth gradients. Lake Hulun, a representative of semiarid- 
region lake in China, has experienced serious lake area shrinkage over the past 20 years. Here, we explored the 
water-depth patterns of three microbial taxonomic groups of bacteria, archaea and fungi and nine ecosystem 
functions related to nutrient cycling in Lake Hulun. We further examined the relative importance of different 
community attributes on EMF variations. We found that the community compositions of bacteria, archaea and 
fungi showed consistent water-depth decay patterns, and EMF and most individual ecosystem functions involved 
in C, N, P and S cycling increased with water depth. Further, EMF was predominantly mediated by microbial 
evenness and community composition, but not species richness, as predicted by the traditional theory of 
biodiversity-ecosystem functioning relationships. In addition, water depth indirectly affected the relationships 
between the microbial community and EMF via sediment nutrient contents. These findings indicate that the 
water depth changes under climate change could substantially alter ecosystem structure and functioning in arid 
regions. We further emphasize the necessity of including multiple community attributes in biodiversity-EMF 
relationship research to clarify the biotic and abiotic forces underlying EMF variations.   

1. Introduction 

Climate change and its impacts on ecosystems have become a major 
global concern (Parmesan and Yohe, 2003). Owing to climate warming, 
lake water levels are expected to decrease because of higher lake surface 
water temperatures and elevated lake evaporation rates (Woolway et al., 
2020), especially in arid regions where these effects are exacerbated 
(Huang et al., 2016). To mitigate the negative impacts of climate 
change, the consequences of changes in lake level or water depth on lake 
ecosystems, especially ecosystem structure such as physiochemical 

conditions and biodiversity, have received increased attention. For 
instance, declines in water level often result in higher total phosphorus 
concentrations and higher risks of cyanobacteria blooms (Jeppesen 
et al., 2015). Lakes with lower water depths are prone to eutrophication, 
which are more difficult to manage and mitigate than deep water lakes 
(Zhang et al., 2020). Furthermore, along water depth gradients, biodi-
versity and community composition usually show clear spatial patterns, 
such as for benthic microbes in deep water lakes (Zhao et al., 2019). As 
lake ecosystems are defined not only by their structures but also by the 
ecosystem functions they perform (Mooney et al., 2004; Rinke et al., 
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2019), their structure should be complemented by functional metrics to 
accurately evaluate ecosystem responses to environmental variables 
such as water depth (Parr et al., 2016). However, the effects of lake 
water depth changes on ecosystem function remain poorly understood. 

Microbial communities, such as bacteria, archaea and fungi, play 
critical roles in simultaneously maintaining multiple ecosystem func-
tions (that is, ecosystem multifunctionality, EMF) associated with 
elemental geochemical processes (Miki et al., 2014) and thus driving 
ecosystem circulation (Bodelier, 2011). In the last two decades, inten-
sive studies mainly in terrestrial ecosystems have shown that the loss of 
microbial diversity tends to impair EMF and subsequently alter their 
ability to provide ecosystem services, ultimately threatening human 
welfare (Cardinale et al., 2012; Garland et al., 2021). For aquatic eco-
systems, research on microbial diversity-ecosystem functioning re-
lationships has focused mostly on single functions, such as primary 
productivity or organic degradation (Ylla et al., 2013; Zimmerman and 
Cardinale, 2014; Zhang et al., 2017), and has neglected the effects of 
biodiversity on EMFs. Moreover, the links between environmental 
stressors and biodiversity may also regulate the relationships between 
microbial diversity and ecosystem functioning (Bradford et al., 2014; 
Jing et al., 2015; Bastida et al., 2016). For instance, regional-scale 
variation in climate can determine, or at least modify, the effects of 
biodiversity on EMF in a study combining the effects of plant and soil 
microbial biodiversity on EMF in the Tibetan Plateau (Jing et al., 2015). 
Given the intensification of climate warming, understanding the effects 
of water depth variations on the relationship between microbial di-
versity and EMF is critical for the management of lake ecosystems in the 
future, especially in arid regions. 

Biodiversity involves multiple components, such as species richness, 
evenness and community composition (Maestre et al., 2012a). Although 
richness has been widely used in studies of microbial biodiversity- 
ecosystem functioning relationships (Lefcheck et al., 2015; Schuldt 
et al., 2018; Hu et al., 2020), evenness (or the complementary term, 
dominance) and species composition have also been increasingly shown 
to affect ecosystem functioning (Hillebrand et al., 2008; Wagg et al., 
2014; Zheng et al., 2019). Furthermore, the positive effects of species 
richness on EMF may be largely modulated by other community attri-
butes, such as species evenness and composition (Maestre et al., 2012a). 
There is thus a need to further disentangle the relative importance of 
these microbial community attributes in driving ecosystem functioning 
upon deciphering the water-depth patterns of the microbial community 
and ecosystem function. 

In this study, we explored the water-depth patterns of three com-
munity attributes, including the species richness, evenness and com-
munity compositions of benthic bacteria, archaea and fungi in Lake 
Hulun, and the nine ecosystem functions associated with carbon (C), 
nitrogen (N), phosphorus (P) and sulfur (S) cycling; in addition, we 
examined the effects of water depth on microbial biodiversity-ecosystem 
functioning relationships. Lake Hulun is located in the northern semiarid 
region and plays a crucial role in maintaining the ecological security of 
northern China (Li et al., 2008). In the last 20 years, however, Lake 
Hulun experienced the largest lake area shrinkage among the 10 largest 
lakes in China (Zhang et al., 2013), indicating a substantial decline in its 
lake water depth. We proposed the following three hypotheses: i) There 
are predictable water-depth patterns in the community attributes of 
bacteria, archaea,fungi and EMF; ii) EMF could be affected not only by 
species richness but also by other primary microbial attributes, such as 
evenness and community composition; and iii) water depth indirectly 
impacts EMF via microbial community attributes. 

2. Materials and methods 

2.1. Study sites 

Lake Hulun (48◦30′40′′–49◦20′40′′N, 117◦00′10′′–117◦41′40′′E), 
with an area of ~ 2,030 km2 in 2017, is the largest lake in northern 

China. In June 2020, 19 sampling sites across Lake Hulun were selected 
along a water depth gradient of 3.8–6.4 m with an average depth of 5.7 
m. We did not sample shallow regions with water depths<3 m because 
of the heavy contents of sand near the lake bank. At each site, water 
depth and Secci depth (SD) were monitored by a bathymeter and a 
Secchi disk, respectively. We collected 1 L of overlying water from the 
upper 50-cm lake surface layer by a 5-L Schindler sampler for chemical 
analyses. We did not sample the water over the sediment, but only 
surface water, for environmental measurement largely due to the 
maximum depth of only 6.4 m, and the well-mixing water conditions of 
this lake (Li et al., 2021). The upper 5-cm surface sediments were 
sampled with a box sampler. The surface sediment samples were sepa-
rated into two subsamples: one was immediately stored at − 20 ◦C for 
microbial community and enzyme activity analyses, and the other was 
stored at 4 ◦C for physiochemical measurements. While fresh sediment is 
ideal for enzymatic activity assays, freezing is proved a suitable alter-
native preventing further decomposition and preserving extracellular 
enzymes of the sediment when logistically necessary (Hewins et al., 
2016). The sediment measurements above were conducted within one 
week after sampling. For each site, the water temperature, dissolved 
oxygen concentration, pH and conductivity in the water column were 
monitored in situ using a multiparameter water quality detector (YSI 
Incorporated, Yellow Springs, USA). The surface sediment pH and con-
ductivity were also measured in situ. 

2.2. Physiochemical variables 

For surface water, total nitrogen (TN), total phosphorus (TP) and 
dissolved nitrogen, including nitrate (NO3

− ), nitrite (NO2
− ) and 

ammonium (NH4
+), and dissolved phosphorus (PO4

3− ), were measured 
according to standard methods (Huang et al., 2000). 

For surface sediments, the samples were freeze-dried for four days to 
constant weights and ground into fine powder. The samples passed 
through a 100-mesh sieve were used for elemental analyses. Sediment 
total carbon (TC) and TN were determined by an elemental analyzer 
(Flash EA 1112 series, CE instruments, Italy). Sediment TP was first 
digested by hydrofluoric acid (HF)-perchloric acid (HClO4) and then 
determined by molybdenum blue colorimetry (Sparks, 1996). The dis-
solved inorganic nutrients and dissolved organic carbon (DOC) in sedi-
ments were extracted by filtering the aqueous suspension of the freeze- 
dried surface sediment (1:20 sediment:water ratio, g/ml) using a 0.45- 
µm cellulose acetate membrane. The dissolved nitrogen (NO3

− , NO2
−

and NH4
+) and phosphorus (PO4

3− ) in sediments were measured ac-
cording to standard methods (Huang et al., 2000), and DOC was 
measured by a total organic carbon analyzer (ET1020A, USA) using the 
combustion oxidation method. 

We also obtained the annual mean water level data in Lake Hulun 
during 1991–2015 from the literature (Zhang et al., 2016; Li et al., 
2019), and the annual TN and TP in the surface water during 1991–2015 
based on Chuai et al (2012) and Liang et al (2016). The lake water level, 
that is the elevation of the lake water surface, was determined according 
to the principle of satellite altimetry and calculated by the Basic Radar 
Altimetry Toolbox software based on the geoid height, which is 
described in details in previous literature (Li et al., 2019). Due to the 
synchrony of changes in lake annual mean water depth and annual mean 
water level, the changes in ecosystem structures and functioning along 
water depth in spatial are expected to predict those along water level in 
temporal. 

2.3. Bacterial and fungal communities 

The DNeasy PowerSoil Kit (QIAGEN, Germany) was used to extract 
genomic DNA from the sediment samples according to the manufac-
turer’s protocols. The identifications of bacterial and fungal commu-
nities were performed according to previously reported descriptions 
(Yeh et al., 2019). For bacterial and archaeal communities, the V4 
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hypervariable region of the 16S ribosomal RNA gene was amplified in 
triplicate via polymerase chain reaction (PCR) using universal primers 
[515F, 5′-GTGYCAGCMGCCGCGGTAA-3′ and 806R, 5′-GGAC-
TACNVGGGTWTCTAAT-3′], and the replicates were then mixed. The 
barcoded PCR products were normalized at equal molality and 
sequenced with 2 × 250 bp paired-end on the Illumina HiSeq sequencing 
platform (Illumina Inc.). The sequences were then processed using the 
Quantitative Insights into Microbial Ecology (QIIME, v1.9) pipeline 
(Caporaso et al., 2010b). Briefly, a denoiser algorithm was used to 
denoise the sequences (Reeder and Knight, 2010), and then the seed- 
based UCLUST algorithm was used to cluster the sequences into opera-
tional taxonomic units (OTUs) at ≥ 97% pairwise identity (Edgar, 2010). 
Singletons, that is OTUs with only one read in the entire dataset were 
excluded and chimeras were removed by ChimeraSlayer (Haas et al., 
2011). Then, the representative sequences from each OTU were aligned 
to the Greengenes imputed core reference alignment (DeSantis et al., 
2006) using PyNAST (Caporaso et al., 2010a). After gaps and hyper-
variable regions were removed using a Lane mask, the alignments were 
used to construct an approximately maximum-likelihood phylogenetic 
tree based on Jukes-Cantor distance using FastTree (Price et al., 2010). 
Finally, a naive Bayesian model with the RDP classifier was used to 
determine the taxonomic identity of each representative sequence 
(Wang et al., 2007). 

For fungal communities, the nuclear ribosomal internal transcribed 
spacer 2 (ITS2) region was amplified using the primers [gITS7F, 5′- 
GTGARTCATCGARTCTTTG-3′ and ITS4R, 5′-TCCTCCGCTTATTGA-
TATGC-3′]. The purified amplicons were pooled in equimolar amounts 
and sequenced in the same HiSeq run. The sequences were processed by 
a published pipeline (Nilsson et al., 2009). Briefly, the chimeric se-
quences were removed using USEARCH (Edgar, 2010). Similar to bac-
terial identification, the UCLUST algorithm was used to cluster fungal 
sequences into OTUs with a 97% similarity threshold to reference se-
quences in the UNITE database (Abarenkov et al., 2010), and the RDP 
classifier (Wang et al., 2007) was used to further identify the taxonomies 
against the UNITE database (Abarenkov et al., 2010). 

The 16S and ITS rRNA raw reads were deposited into the NCBI 
Sequence Read Archive database (Accession Number: SRR13611586 to 
SRR13611623). 

2.4. Ecosystem function measurements 

To quantify the ecosystem functions, the potential activities of nine 
extracellular enzymes related to carbon and nutrient (nitrogen, phos-
phorus and sulfur) cycling were determined using a fluorimetric 
microplate enzyme assay (Pritsch et al., 2004) following a previous 
protocol (Liu et al., 2021). Among the nine extracellular enzymes, 
β-glucosidase (BG), cellobiohydrolase (CBH), xylanase (BX) and 
β-galactosidase (GAL) are related to carbon cycling. Leucine amino-
peptidase (LAP) is related to nitrogen cycling. β-N-acetylglucosamini-
dase (NAG) and N-acetyl-β-galactosaminidase (NAGA) are related to 
carbon and nitrogen cycling. Aryl sulfatase (SUL) and acid phosphatase 
(AP) are related to sulfur and phosphorous cycling, respectively. The 
detailed functions of these nine enzymes are listed in Table S1. 

2.5. Microbial community analyses and ecosystem multifunctionality 

Before microbial community analyses, we rarefied bacterial, archael 
and fungal communities at 65813, 444 and 1288 OTUs respectively to 
avoid variation in abundance or deviation in sampling intensity. We 
confirmed that the rarefied microbiome data were reliable by testing the 
effects of sequencing depths on microbial diversity estimates (Fig. S1). 
We then calculated species richness (the number of observed OTUs), 
Pielou’s evenness (Pielou, 1969) and community compositions of bac-
teria, archaea and fungi in surface sediments. The community compo-
sitions were represented by Bray-Curtis dissimilarity matrices. 

Ecosystem multifunctionality (EMF) was quantified with an 

averaging approach to indicate the simultaneous performance of mul-
tiple functions (Manning et al., 2018). This approach is widely used in 
the multifunctionality literature (Maestre et al., 2012b; Bradford et al., 
2014; Wagg et al., 2014; Lefcheck et al., 2015) and measures EMF by 
collapsing multiple ecosystem functions into a single metric. Specif-
ically, we calculated Z-scores for all of the ecosystem functions 
measured and averaged them for each site, and the averaged value 
indicated EMF (Maestre et al., 2012b). 

2.6. Statistical analyses 

We fitted ordinary least squares (OLS) regressions for the water- 
depth patterns of abiotic environmental factors, the species richness 
and evenness of the three taxonomic groups, EMF, and the nine single 
ecosystem functions; we also fitted OLS regressions for the relationships 
between EMF and richness or evenness. In addition, OLS regression was 
used to explore the relationships between annual mean water level 
change and annual mean water TN or TP. The significance of OLS re-
gressions was evaluated by the analysis of variance method with pseudo- 
F statistics. Then, linear models were used to visualize the relationships 
of the Bray-Curtis dissimilarity of the three taxonomic groups with 
water-depth distances or the differences in ecosystem functions. And the 
significance of the linear models was determined using Mantel test (999 
permutations). The Euclidean distance of ecosystem functions were 
computed between all pairs of sampling sites to represent differences in 
ecosystem functions. Furthermore, we used the Procrustean matrix su-
perimposition (Jackson, 1995) to assess the degree of association or 
concordance between microbial community composition and ecosystem 
function composition using the first two axes of the principal coordinate 
analysis. We obtained the metric of association (m2, ranging from 0 to 1) 
indicated by the sum of squared residuals between the scaled and 
rotated configurations of each ordination solution (Jackson, 1995). The 
smaller the m2 metric is, the stronger the concordance between the two 
data sets (Peres-Neto and Jackson, 2001). The significance was then 
assessed by permutation tests (999 permutations). 

We then performed random forest (RF) analysis to quantify the 
relative contributions of abiotic factors in explaining the species rich-
ness, evenness and PCoA1 of bacterial, archaeal and fungal communities 
or the nine single ecosystem functions. RF is a machine-learning algo-
rithm that aims to compute the importance of each predictor variable by 
averaging the decrease in prediction accuracy over 2000 trees in a for-
est. Such a decrease in each tree for each predictor is determined by 
calculating the increase in the mean square error between observations 
and the out-of-bag predictions when the data for that predictor are 
randomly permuted. We did not apply cross validation for model 
development or valuation largely because the small sample numbers and 
no further need of the resulting statistical models for prediction or 
extrapolation. Because of bagging and random features, RF produces 
accurate classifications and effective predictions (Breiman, 2001). We 
also used Pearson correlation analysis to confirm the correlation sig-
nificance of abiotic factors with species richness, evenness, PCoA1, or 
the nine single ecosystem functions. 

Finally, we used a structural equation model (SEM) (Grace et al., 
2012) to further evaluate the relationships among water depth, other 
abiotic factors, microbial community attributes and EMF. SEM is a 
modeling framework that aims to develop and evaluate models to 
quantitatively investigate the underlying causal relationships among 
variables using statistical principles along with causal assumptions 
(Grace et al., 2012). In the SEMs, abiotic factors except for water depth 
were included as a composite variable: that is, the first axis of principal 
component analysis of these abiotic variables (Envi.PCA1). We com-
bined the three taxonomic groups of bacteria, archaea and fungi into a 
synthetic community, and then included the species richness, evenness 
and the first axis of principal coordinate analysis of the synthetic com-
munity (PCoA1sc, accounting for 65.1% of the community variation) as 
microbial community attributes in SEMs. To clarify the role of dominant 
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environmental factors, we constructed another SEM in which the Envi. 
PCA1 was replaced by three dominant environmental factors proved to 
be important for changes in ecosystem functions in the RF analysis 
above: that is sediment NH4

+, sediment TP and sediment DOC. All the 
initial input variables were Z-score transformed to allow comparisons 
among the explanatory variables. After modeling, we tested the overall 
goodness of fit for the SEMs and screened the models with a nonsignif-
icant χ2 test (χ2 < 2, p > 0.05), a high comparative fit index (CFI > 0.95) 
and a nonsignificant root mean square error of approximation (RMSEA 
< 0.05, p > 0.05) (Grace et al., 2012). The overall significance of the 
SEMs and standardized effects (standardized path coefficient, β) were 
assessed by analysis of variance (ANOVA). The model with the lowest 
Akaike information criterion (AIC) value was selected as the final best 
model. 

The statistical analyses, including the Bray-Curtis dissimilarity 
matrices of microbial communities (and Procrustean matrix superim-
position), PCoA, Pearson correlation analyses, OLS regressions (and 
PCA), RF and EMF, were performed in R version 3.6.1 using the pack-
ages vegan V2.5–6, ape V5.3, Hmisc V4.3–0, Stats V3.6.1, random-
ForestSRC V2.9.2 (Breiman, 2001) and lavaan V.0.6–5 (Rosseel, 2012), 
respectively. Before OLS regressions, the linear model assumptions, 
including normality, independence, linearity, and homoscedasticity, 
were tested using the R package gvlma V1.0.0.3 (Peña and Slate, 2006). 
Before RF analyses, we excluded abiotic environmental variables with 
strong collinearity based on high variance inflation factors (>10) using 
the R package usdm V1.1–18 (Naimi et al., 2014). We summarized the 
overall statistical analyses in the framework in Fig. S2. 

3. Results 

3.1. Water-depth patterns of physiochemical factors 

Across the whole lake, the mean values of TN and TP in the water 
column were 1.12 and 0.12 mg L− 1, respectively (Table S2). Although 
the water depth range was only 2.6 m, there were large variations in 
several sediment nutrient variables, such as TC, TN and TP contents, 
with ranges of 2.3 ~ 56.8, 0.2 ~ 1.1, and 0.2 ~ 3.4 g kg− 1, respectively 
(Table S2). Some physiochemical variables, especially nutrients, showed 
significant trends along the water-depth gradient, as indicated by OLS 

regression analysis (Figs. 1, S3). For instance, in surface water, SD 
showed a decreasing water-depth pattern (p < 0.05, Fig. 1b), whereas 
TN and PO4

3− were significantly positively correlated with water depth 
(p < 0.05, Fig. 1c, d). In surface sediments, the relationships between 
water depth and abiotic factors, including TC, TN, TP, DOC, NH4

+, and 
PO4

3− , were consistently positive (p < 0.001, Figs. 1e–g, S3), indicating 
that these nutrient levels increased with water depth. 

3.2. Water-depth patterns of microbial community attributes and 
ecosystem function 

For microbial community attributes, the community composition, 
but not species richness and evenness, of the three taxonomic groups 
showed consistently significant water-depth patterns. Specifically, we 
only found decreasing patterns of bacterial evenness and fungal richness 
(p < 0.001, Fig. 2a, Fig. S4c) with water depth. However, the Bray-Curtis 
similarities of all three taxonomic groups had significant water-depth 
decay patterns (that is, the increasing Bray-Curtis dissimilarities with 
greater water depth differences) (p < 0.001, Fig. 2d–f). To better visu-
alize the distribution of the microbial communities along water depth, 
we ordinated each community using principal coordinate analysis 
(PCoA) and then the scores on the first and second axis were extracted 
(that is, PCoA1 and PCoA2) for further analyses. Similarly, the PCoA1 of 
bacteria, archaea and fungi accounting for 63.6%, 48.3% and 41.8% of 
community variations, respectively, also clearly varied with water depth 
(Fig. 2g–i). 

For ecosystem functions, EMF (p < 0.001, Fig. 3a) and most of the 
measured potential enzymatic activities significantly increased with 
water depth, such as BG, CBH, and BX for C cycling; NAG and NAGA for 
C and N cycling; and SUL for S cycling (Fig. 3). Potential enzymatic 
activities showing nonsignificant water-depth patterns were GAL, LAP 
and AP for C, N and P cycling, respectively (p > 0.05, Fig. 3e, h, i). 

3.3. Relationships among microbial community attributes, EMF, and 
abiotic variables 

Only EMF was significantly (p < 0.05) negatively correlated with 
bacterial evenness, fungal richness and evenness (Figs. 4a, c, S4f). 
However, EMF differences were significantly positively correlated with 

Fig. 1. Sampling map (a) and water-depth patterns of main chemical factors (b-g) in Lake Hulun. In the sampling map, fathom lines are depicted. The lines in (b)-(g) 
represent the fitted ordinary least squares (OLS) regressions. The p and adjusted R2 values of the OLS regressions are shown. * p < 0.05, *** p < 0.001. 
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Bray-Curtis dissimilarities for all three taxonomic groups (p < 0.001, 
Fig. 4d–f). Furthermore, the Procrustean matrix superimposition 
showed that the community variations of bacteria, archaea and fungi 
were consistent with the composition variations of ecosystem functions 
(p < 0.001, Fig. 4g–i). 

The analyses of random forest and Pearson correlation showed that 
the DOC, TP and NH4

+ in sediments, in addition to water depth, 
consistently dominated the variation in the community composition 
(PCoA1) (p < 0.01, Fig. 5) of the three taxonomic groups. Regarding 
species richness and evenness, similar results were only observed for 
fungal richness and bacterial evenness (p < 0.01, Fig. 5). Sediment DOC 
and water pH were the two abiotic factors that most significantly 
affected fungal evenness (p < 0.01, Fig. 5). In addition to water depth, 
DOC, TP and NH4

+ in sediments made the greatest contributions (p <
0.05, Fig. 5) to variation in the potential activities of six enzymes (BG, 
CBH, BX, NAG, NAGA, and SUL). However, GAL activity primarily 
increased with sediment NO2

− and NH4
+ (p < 0.05, Fig. 5), and LAP 

activity increased with SD (p < 0.05, Fig. 5); AP activity was mainly 
explained by sediment NO3

− , the pH of sediments and water (p < 0.05, 
Fig. 5). 

3.4. Water depth regulated the links between microbial community 
composition and EMF 

The final two SEMs accounted for 84% and 84.6% of the variation in 
EMF, respectively (Figs. 6 and S4). The first axis of principal component 
analysis of abiotic environmental variables except for water depth (Envi. 
PCA1) accounted for 40.05% of the total variations, and the first four 
loadings of Envi.PCA1 were sediment variables including PO4

3− , TC, TN 
and TP (Fig. S5). Water depth had significant effects on Envi.PCA1 (p <
0.001, β = 0.606, Fig. 6), and on the sediment NH4

+, TP and DOC (p <
0.001, β = 0.616, 0.751, 0.735, respectively, Fig. S6). Envi.PCA1 sub-
stantially affected microbial evenness (p < 0.001, β = − 0.927, Fig. 6) 
and community composition PCoA1sc (p < 0.001, β = 1.307, Fig. 6) but 
had a nonsignificant effect on species richness (p > 0.05, β = 0.146, 
Fig. 6). Specifically, microbial species richness and evenness were 
mainly affected by sediment NH4

+ and TP, respectively (p < 0.001, β =
0.943, 0.932, respectively, Fig. S6), while microbial PCoA1sc was 
simultaneously affected by sediment NH4

+ (p < 0.01, β = 0.584), TP (p 
< 0.01, β = 0.684) and DOC (p < 0.05, β = 0.327, Fig. S6). In the first 
model, EMF significantly (P < 0.001) decreased with microbial evenness 
and increased with PCoA1sc, with β values of − 0.454 and 0.557, 

Fig. 2. Water-depth patterns of microbial community attributes. Microbial community attributes of the bacteria, archaea and fungi in surface sediments include 
evenness and community compositions. The community compositions include Bray-Curtis dissimilarity matrices and the first and second axes of community principal 
coordinate analysis (that is, PCoA1 and PCoA2). For the water-depth patterns of evenness, the significant (p < 0.05) regression line were shown with 95% confidence 
intervals indicated by the shaded areas (a-c). For the Bray-Curtis dissimilarity of community compositions along water-depth distances, the significant regression 
lines were shown with 95% confidence intervals indicated by the shaded areas (d-f). The F statistic p and adjusted R2 values, and the Mantel statistic p and r values are 
shown. * p < 0.05, ** p < 0.01, *** p < 0.001. Besides, the biplots of PCoA1 and PCoA2 of each taxonomic group was also plotted with the fathom lines added (g-i). 
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respectively, but was not affected by species richness (p > 0.05, Fig. 6). 
And the similar results were found in the second model (Fig. S6). 

4. Discussion 

Although lake water depth responds dramatically to climate change 
(Woolway et al., 2020), little is known about how changes in water 
depth influence lake ecosystem function and biodiversity-EMF re-
lationships. Our study addressed these questions by thoroughly 
analyzing the community attributes of three benthic microbial taxo-
nomic groups and measuring nine microbial ecosystem functions across 
the water depth gradient in Lake Hulun. Compared with previous studies 
reporting ecosystem functioning and the ecological consequences of lake 
water depth changes, our findings are unique in showing that (1) EMF 
increased with water depth, (2) the evenness and community composi-
tion, but not species richness, determined EMF variations, and (3) the 
causal relationships between the microbial community and EMF were 
indirectly affected by lake water depth. 

In the semiarid Lake Hulun, we unexpectedly found that bacteria, 
archaea and fungi showed nonsignificant water-depth patterns in spe-
cies richness or evenness, except for fungal richness and bacterial 
evenness, but had consistent water-depth decay patterns in community 
composition. The water-depth decay patterns are consistent with pre-
vious studies indicating the generality of spatial distance-decay re-
lationships for both micro- and macroorganisms (Nekola and White, 
1999; Hanson et al., 2012). The distance decay of biotic similarity can be 
attributed to a decrease in environmental similarity with spatial distance 
(e.g., the water depth gradient in our study) (Nekola and White, 1999). 
However, our results regarding the increasing water-depth patterns of 
archaeal richness and bacterial evenness are inconsistent with previous 
findings in other habitats, such as deep lakes (Zhao et al., 2019) and 
marine environments (Brown et al., 2009; Kosobokova et al., 2011; Liu 
et al., 2018). For instance, the species richness of bacteria and chiron-
omids nonlinearly decreases with water depth, and diatom richness 
shows hump-shaped patterns in deep-water Lake Lugu (Zhao et al., 
2019). Bacterial richness in the water column also decreases with depth 
in marine environments, such as the North Pacific Ocean (Brown et al., 
2009) and New Britain Trench (Liu et al., 2018). The richness and 
evenness of zooplankton show hump-shaped patterns with water depth 
in the Arctic’s central basins (Kosobokova et al., 2011). Generally, the 
water-depth patterns of aquatic community attributes are frequently 
observed in marine environments (Smith and Brown, 2002; Brown et al., 
2009; Kosobokova et al., 2011; Bryant et al., 2012; Liu et al., 2018) but 

are less frequently reported in freshwater ecosystems, the latter of which 
probably stems from the relatively smaller spatial scales and increased 
levels of disturbance (Gushulak et al., 2017; Zhao et al., 2019). The 
water-depth biodiversity gradient is not only an understudied biogeo-
graphical pattern (Zhao et al., 2019), but it is also an urgent issue 
regarding the responses of lakes to climate change, especially in arid 
regions (Huang et al., 2016). Our results highlight that climate change in 
arid regions with decreasing water levels may increase the driving forces 
of changes in water depth on aquatic microbial community dynamics, 
even with a relatively narrow range of water depths, which is further 
explained in the following discussion. 

As we expected, EMF and most individual ecosystem functions were 
positively correlated with water depth. For instance, the potential 
enzymatic activities of BG, CBH, BX, NAG, NAGA and SUL increased 
with water depth. To the best of our knowledge, studies on the water- 
depth patterns of single ecosystem functions in sediments are rare; 
furthermore, this is the first study to reveal the water-depth pattern of 
EMF. For single ecosystem functions, our increasing water-depth pat-
terns are generally different or even contrary to those of most previous 
studies, regardless of the differences in ecosystem functional indicators 
considered (Hunt et al., 2003; Fu et al., 2014; Rober et al., 2014; Mar-
tínez et al., 2016), habitat types (Bourgeois et al., 2017) or research 
scales (Mahmoudi et al., 2020). In previous EMF studies, ecosystem 
functional indicators such as primary production and nutrient cycling (e. 
g., enzyme activities, microbial activity and decomposition rate) have 
received the most attention (Garland et al., 2021). For instance, 
macrophyte productivity shows a unimodal distribution along a lake 
water depth gradient with a peak at intermediate depth (Fu et al., 2014). 
The decomposition rate in streams (Martínez et al., 2016) and the 
denitrification in bulrush wetlands (Hunt et al., 2003) are negatively 
correlated with water depth. For oceanic habitats, the benthic remi-
neralization function represented by sediment oxygen demand was also 
observed to decline with water depth in a Pan-Arctic review (Bourgeois 
et al., 2017). Along larger depth gradients, for example, from 800 to 
2,200 m, the potential enzymatic activities of BG, CBH, BX, NAG and AP 
decrease in marine environments (Mahmoudi et al., 2020). For EMF, the 
increasing water-depth pattern further confirms the importance of water 
depth for microbes in the maintenance of multiple ecosystem functions. 

We speculated that the water-depth patterns of microbial commu-
nities and ecosystem functioning may be characterized by the unique-
ness of lakes in arid regions with intensive human activities. In our 
analyses of RF and Pearson correlation, most of the ecosystem functions 
and microbial community attributes were primarily correlated with 

Fig. 3. Water-depth patterns of ecosystem multifunctionality (EMF, a) and single functions (b-j). Single functions include β-glucosidase (b), cellobiohydrolase (c), 
xylanase (d), β-galactosidase (e), β-N-acetyl-glucosaminidase (f), N-acetyl-β-galactosaminidase (g), leucine amino peptidase (h), phosphatase (i), aryl sulfatase (j). 
MUF: 4-methylumbelliferyl. AMC: 7-amino-4-methylcoumarin. The lines represent the fitted ordinary least squares (OLS) regressions, with 95% confidence intervals 
indicated by the shaded areas. The p and adjusted R2 values of the OLS regressions are shown. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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sediment nutrient status, including the DOC, TP and NH4-N in sedi-
ments. Interestingly, sediment TN and water depth are also the first two 
main factors affecting the spatial distribution of diatom assemblages in 
the surface sediments of Lake Hulun (Wang et al., 2015). Lake Hulun has 
suffered from eutrophication since the 1980s (Li et al., 2008), and the 
situation is aggravated because of water level declines under a warming 
and drying climate (Chuai et al., 2012). Under extreme water level de-
clines, internal nutrient cycling increases, and nutrient retention ca-
pacity decreases, with nutrients being available to the biota and thereby 
enhancing the risk of algal blooms (Jeppesen et al., 2015). The enrich-
ments in internal C, N, and P sources inevitably reshuffle the spatial 
layouts of microbial communities and ecosystem functions related to 
nutrient cycling. Therefore, the water-depth patterns of microbial 
community attributes and ecosystem functioning result from the water- 
depth nutrient variation associated with climate warming. This 
conclusion is supported by the fact that there were no direct effects of 
water depth on microbial community attributes and EMF when other 

environmental and biotic factors were considered in the SEM analysis. 
Generally, global arid regions are expected to increase in lake area by 
11–23% and to warm at twice the rate of humid regions by the end of 
this century (Huang et al., 2016). Our findings imply that climate change 
will likely amplify the negative effects of eutrophication or other human 
stressors on the structure and function of lake ecosystems, especially in 
arid regions. 

Inconsistent with our hypothesis, microbial community attributes, 
including evenness and community composition but not species rich-
ness, dominated EMF variations. The nonsignificant effects of microbial 
richness on EMF in our study contradicted previous findings in 
biodiversity-EMF relationship research (Lefcheck et al., 2015; Schuldt 
et al., 2018; Hu et al., 2020), indicating that the capability of sustaining 
multiple ecosystem functions is enhanced with increasing species rich-
ness because different species often influence different functions (Hector 
and Bagchi, 2007). Indeed, we revealed the substantial impacts of 
evenness and community composition on EMF but not those of species 

Fig. 4. Relationships between microbial community attributes and ecosystem multifunctionality (EMF). Microbial community attributes of the bacteria, archaea and 
fungi in surface sediments include evenness and community compositions. The community compositions include Bray-Curtis dissimilarity matrices and the first and 
second axes of community principal coordinate analysis (that is, PCoA1 and PCoA2). For the relationships of the evenness with EMF, the significant (p < 0.05) 
regression line were shown with 95% confidence intervals indicated by the shaded areas (a-c). For the relationships of community compositions with EMF, the 
significant regression lines were shown with 95% confidence intervals indicated by the shaded areas (d-f). In addition, the procrustean matrix superimposition was 
performed to assess the degree of concordance between the spatial patterns in community composition (PCoA1 and PCoA2) of each taxonomic group and ecosystem 
function composition (g-i). The arrows indicate the rotation directions from rotated configurations (ecosystem functions, solid square) to scaled configurations 
(bacterial/archaeal/fungal communities, hollow circle). The F statistic p and adjusted R2 values, the Mantel statistic p and r values, and permutation statistic p and m2 

values are shown. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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richness. Evenness was negatively correlated with EMF, indicating that 
greater species dominance is expected to increase EMF because domi-
nance is inversely proportional to evenness. This implies that specific 
microbial species could simultaneously influence multiple functions, 
and thus, the increases in their relative abundances would promote EMF 
compared with other species. Such a phenomenon was also observed in a 
microcosm experiment exploring the impacts of lichen evenness on EMF 
related to C, N and P cycling (Maestre et al., 2012a). The strong effects of 
community composition on EMF might result from the unique assem-
blage of microbial species (Zhang et al., 2019a; Zhang et al., 2019b). 
That is, particular assemblages with unique suites of species might be 
responsible for the great changes in EMF, and communities that are 
highly dissimilar to these assemblages would exhibit lower EMF. In 
addition, the relationships between community compositions and EMF 
may also depend on the sets of ecosystem functions examined. For 
instance, a study in soil ecosystems showed significant effects of bacte-
rial and archaeal community composition on soil N processes but not on 
soil C processes (Zheng et al., 2019). These findings shed light on the 
mechanisms by which microbial communities alter EMF related to 
aquatic nutrient cycling and emphasize the importance of integrating 
multiple community attributes to improve predictions of EMF. 

We further found that the associations between the microbial com-
munity and EMF were indirectly affected by water depth. As speculated 
in previous discussions, microbial communities mediate their capability 
to simultaneously alter multiple ecosystem functions through variation 
in evenness and composition resulting from the dynamics in specific 
species and particular assemblages with unique functions. The spatial 
variations in these species or assemblages were likely attributed to al-
terations in environmental variables, including DOC, TP and NH4

+ in 
sediments, which increased with water depth. Therefore, water depth 
not only determined the spatial patterns of sediment microbial com-
munities and ecosystem functioning but also indirectly affected micro-
bial community-EMF relationships via nutrient enrichment. The TP 
concentration in the overlying water of Lake Hulun is close to that of 
Lake Taihu, which has been highly publicized for its eutrophication in 
the last decade (Zhang et al., 2021). Lake Hulun has experienced 
continuous water level declines in 2001–2012 (Fig. S7a), and in 
extremely arid years such as 2009, the concentrations of TN, TP and 
dissolved organic matter in Lake Hulun could be 0.5, 6.0 and 8.8 times 
higher than those in Lake Taihu, respectively (Chen et al., 2012; Chuai 

et al., 2012). In Lake Hulun, the TN and TP contents in the overlying 
water increase linearly with declining water level (p < 0.001, Fig. S7b). 
Thus, the continuous water level decline under climate warming might 
not only accelerate eutrophication and promote the formation of mi-
crobial water-depth patterns but also weaken whole-lake ecosystem 
functioning because of the dual loss of aquatic microbial biogeochemical 
cycling functionality in deep water zones and coastal zones driven by the 
conversion to drylands. Moreover, biodiversity-EMF links have also 
recently been proposed to be indirectly controlled by human stressors 
and climate change (Jing et al., 2015). For example, the positive linear 
relationship between microbial diversity and EMF is mediated by the 
contents of heavy metals and phosphorus via changes in sediment mi-
crobial communities (Zhang et al., 2021). Regional-scale precipitation 
and temperature changes can modify the impacts of biodiversity on EMF 
in alpine grasslands (Jing et al., 2015). Our findings thus provide new 
evidence for the joint effects of human stressors (i.e., eutrophication) 
and climate change (i.e., decreased water depth associated with lake 
shrinkage) on lake microbial diversity-EMF relationships in arid regions. 

5. Conclusions 

Our study revealed consistent water-depth decay patterns in the 
community composition of benthic microbes, including bacteria, 
archaea and fungi, and increasing water-depth patterns of ecosystem 
multifunctionality and individual ecosystem functions related to C, N, P 
and S cycling in semiarid Lake Hulun. We further found that microbial 
community attributes, including evenness and community composition 
rather than species richness, dominated the variations in ecosystem 
multifunctionality. Furthermore, these links between the sediment mi-
crobial community and ecosystem multifunctionality were indirectly 
affected by lake water depth via nutrient enrichment and the microbial 
attributes of evenness and community composition. Our findings in 
semiarid lakes provide a new perspective on the growing literature in 
our understanding of the mechanisms underlying the responses of 
aquatic ecosystems to human stressors and climate change and highlight 
the urgency of protecting freshwater biodiversity from the joint influ-
ence of human activities and climate change to sustain lake ecosystem 
functioning in arid regions. 

Fig. 5. The environmental factors related to mi-
crobial community attributes and single functions. 
The relative contributions (%) of these factors to 
each response variable was estimated with 
Random Forest and represented by the color and 
size of solid circles. The significance of environ-
mental factors on response variables were 
confirmed by using Pearson correlation analyses 
and labeled with asterisks. Red and black asterisk 
indicate positive and negative correlation, 
respectively. * p < 0.05, ** p < 0.01, *** p < 0.001. 
Microbial community attributes include species 
richness, evenness and community compositions 
(the first axis of the community’s principal coor-
dinate analysis, PCoA1) of the bacteria, archaea 
and fungi in surface sediments. Single functions 
include β-glucosidase (BG), cellobiohydrolase 
(CBH), xylanase (BX) and β-galactosidase (GAL) 
involving in carbon cycling, leucine amino pepti-
dase (LAP) involving in nitrogen cycling, β-N- 
acetylglucosaminidase (NAG) and N-acetyl-β-gal-
actosaminidase (NAGA) involving in carbon and 
nitrogen cycling, aryl sulfatase (SUL) involving in 
sulfur cycling and acid phosphatase (AP) involving 
in phosphorous cycling. (For interpretation of the 
references to color in this figure legend, the reader 
is referred to the web version of this article.)   
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