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Abstract
Although biodiversity and ecosystem functions are strongly shaped by contemporary environments, such as climate and
local biotic and abiotic attributes, relatively little is known about how they depend on long-term geological processes. Here,
along a 3000-m elevational gradient with tectonic faults on the Tibetan Plateau (that is, Galongla Mountain in Medog
County, China), we study the joint effects of geological and contemporary environments on biological communities, such as
the diversity and community composition of plants and soil bacteria, and ecosystem functions. We find that these biological
communities and ecosystem functions generally show consistent elevational breakpoints at 2000–2800 m, which coincide
with Indus-Yalu suture zone fault and are similar to the elevational breakpoints of soil bacteria on another mountain range
1000 km away. Mean annual temperature, soil pH and moisture are the primary contemporary determinants of biodiversity
and ecosystem functions, which support previous findings. However, compared with the models excluding geological
processes, inclusion of geological effects, such as parent rock and weathering, increases 67.9 and 35.9% of the explained
variations in plant and bacterial communities, respectively. Such inclusion increases 27.6% of the explained variations in
ecosystem functions. The geological processes thus provide additional links to ecosystem properties, which are prominent
but show divergent effects on biodiversity and ecosystem functions: parent rock and weathering exert considerable direct
effects on biodiversity, whereas indirectly influence ecosystem functions via interactions with biodiversity and contemporary
environments. Thus, the integration of geological processes with environmental gradients could enhance our understanding
of biodiversity and, ultimately, ecosystem functioning across different climatic zones.

Introduction

It has long been the core of ecology for disentangling the
mechanisms underlying temporospatial distributions of
biodiversity, and further ecosystem functions [1–4]. Biodi-
versity is by no means the only, or even the primary, driver
of ecosystem functions [5, 6]. Both biodiversity and eco-
system functions have been known to be driven by common

drivers of contemporary environments, such as climate and
biotic and abiotic attributes [2, 4, 7, 8]. Biodiversity could
be also shaped by long-term drivers, such as geological
processes, which impart lasting legacies on contemporary
environments ([1, 9, 10]). This is especially true for
mountain regions, where a close link between geological
processes and biological communities has been recently
revealed by showing the effect of erosion and soil hetero-
geneity on biodiversity of terrestrial tetrapods [11]. How-
ever, geological processes have not yet been assessed for
effects on microbial communities and ecosystem functions.
Furthermore, the interactions between contemporary and
geological processes have rarely been documented in regard
to their influence on biological communities and ecosystem
functions.

To better understand the underlying mechanisms, we
propose a framework integrating biology and earth sci-
ences by incorporating both contemporary environments
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and long-term geological processes on mountainsides
(Fig. 1a). Mountain ranges, created and affected by
geological processes, have tectonic boundaries, such as
sutures and faults [12], and show predictable trends in
climatic and abiotic environmental factors with elevation,
and thus show plant and animal zonation. For example,
the Himalayan–Tibetan orogeny was developed by the
collision of the Indo-Malaysia and Eastern-Asia tectonic
plates [13, 14] and harbors dozens of major faults [12].
The resulting mountain ranges cover almost all major
natural ecosystem types on Earth and are important in

maintaining biodiversity and ecosystem functions, such
as South-East Tibet biodiversity hotspot [15]. Elevation
gradients in mountain regions are invaluable as a natural
laboratory for the empirical testing of the hypothesized
framework (Fig. 1a) for biodiversity patterns [16, 17] and
their links to ecosystem functions.

In this study, we addressed the question of how biodi-
versity and ecosystem functions vary along an elevational
gradient, what are the main drivers for such elevational
patterns (contemporary environments versus geological
processes), and how geological processes directly and

Fig. 1 Hypothesized mechanisms for biological communities and
ecosystem functions, and sampling maps. a Conceptual model
showing hypothesized relationships among contemporary environ-
ments (e.g., climate, local, and biotic), long-term geological (e.g.,
parent rock and weathering) processes and ecosystem functions. Solid
arrows depict known causal relationships, whereas dashed arrows
show the hypothesized but not explicitly documented relationships.

b Tectonic map of the Tibetan Plateau showing the locations of
Galongla and Gongga mountains. c Sampling sites on Galongla
Mountain in Medog, Tibet. This elevational gradient extends across
the Indus-Yalu suture zone fault (red lines) bounded by the Himalaya
and Gangdese terranes. d The sites sampled on Gongga Mountain by
Li et al. [18]. The elevational gradient is intercepted by a secondary
Xianshuihe fault (red lines).
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indirectly affect biodiversity and ecosystem functions.
Along an elevational gradient of 700–3760 m on Galongla
Mountain on the South-East Tibetan Plateau, we examined
the biological communities and ecosystem functions for 180
plots at 18 sites covering multiple climatic and vegetation
zonations from tropical monsoon rainforests to frigid shrub
meadows (Fig. 1b, c). The selected elevational gradient
crosses multiple faults with contrasting rock formations that
result from the movements and collisions of the Himalaya
and Gangdese terranes (Fig. 1b). We examined geological
variables, such as soil parent rock and weathering condi-
tions, and contemporary environments, such as climate,
local, and biotic attributes (Fig. 1a, S1). For biotic attri-
butes, we determined the relative abundance, diversity, and
community composition of plants and bacteria. We further
measured 38 ecosystem functions, which are categorized
into functional groups including soil nutrients, plant bio-
mass, microbial biomass, and carbon cycling and storage
(Table S1), and we characterized three facets of ecosystem
functioning: individual function, ecosystem multi-
functionality (EMF) [6], and the composition of ecosystem
functions. EMF is an integrated ecosystem function metric
to indicate the simultaneous performance of multiple func-
tions [6]. We finally tested the consistency in biodiversity
elevational patterns by comparing our results to the reported
bacterial communities of Gongga Mountain [18] on the
South-East Tibetan Plateau (Fig. 1d). The framework
regarding “Materials, Methods, and Aims” is shown in
Fig. S2. We expected that the biodiversity of plants and
microbes, and ecosystem functioning would be strongly
affected by contemporary environments, such as soil pH
and current climates. We further expected the long-term
processes (that is, parent rock and weathering) would
directly mediate the biodiversity and ecosystem function-
ing, but also show indirect influences via the interaction
with contemporary environments. These hypothesized links
for biological communities and ecosystem functions are
shown in Fig. 1a.

Materials and methods

Site description

We examined a 3000-m elevational gradient (29°28′–29°
75′ N, 95°20′–95°71′ E) on Galongla Mountain in Medog
County, the lower reach of the Yalu Tsangpo River in
South-East Tibetan Plateau, China (Figs. 1b, c). Galongla
Mountain is a part of the Gangrigabu Mountain range, and
the elevations go through the Indus-Yalu suture zone fault.
This region was highly geologically dynamic as being in a
strong tectogenetic area [19]. The Indus-Yalu suture is
bounded by the Himalaya and Gangdese terranes, which are

originally derived from the Indo-Malaysia and Eastern-Asia
plates, respectively.

Along this elevational gradient, a full range of vegetation
types is distributed. At the lowest elevation (below 1100m),
there is the northernmost and highest-elevation tropical
monsoon rain forest zone in the Northern Hemisphere.
Toward high elevations, vegetation zones are the following:
subtropical evergreen broadleaved forests (1100–2000m),
subtropical evergreen and semi-evergreen broadleaved forests
(2000–2500m), temperate mixed coniferous broadleaved
forests (2500–3000m), frigid-temperate coniferous forests
(3000–3700m), and frigid shrub meadows beyond 3700m.

Vegetation survey and soil sampling

In July–August of 2012, we performed vegetation surveys
and soil sampling at 18 sites or elevations ranging from 700
to 3760 m across the six vertical vegetation zones. Each site
was carefully selected based on soil formation and no gla-
cial, river, and wind impacts were identified. For plant
communities, we established ten plots of 10 m × 10 m on
each site for trees, and 5 m × 5 m plots for shrubs. The
identification level of plants varied from species to family,
and we recorded virtual taxa (hereafter species) and the
number of individuals of each species for the estimation of
density, coverage, and height within each plot. Plant
importance values were computed as the average of the
relative density, coverage, and height. We categorized
plants as trees (that is, fir, hardwood and softwood), shrubs,
and herbs. Plant biomass for these plant types was estimated
as follows [20–22]: (1) fir biomass= (0.4642 V+ 47.4990)/
100; (2) hardwood biomass= (0.6573 V^1.0502)/100;
(3) softwood biomass= (2.1529 V^0.6085)/100; (4) shrub
biomass= (0.0398 * height * 100− 0.3326) * coverage/25;
and (5) herb biomass= (0.0175 * height * 100–0.2888) *
coverage. V represents volume, and was calculated as V=
100 * height * coverage.

For soil samples, we randomly collected 25 soil cores
from the upper 10 cm using a soil auger (Ф 5 cm) from each
plot, and then mixed them as one composite sample.
Totally, there were ten composite soil samples for each site,
and 180 samples for the whole elevational gradient. For
each composite sample, 500 g of soils was sieved through a
2-mm mesh and then stored at 4 °C for physiochemical and
enzyme activity analyses or at −80 °C for organic chemical
and molecular analyses.

Climate and soil physiochemical variables

For each site, mean annual temperature was predicted with
local meteorological stations using a linear model with lati-
tude, longitude and elevation as explanatory variables. Mean
annual precipitation was obtained based on the datasets from
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the Climate Hazards group InfraRed Precipitation with Sta-
tions (CHIRPS, http://chg.geog.ucsb.edu/data/chirps/) and
local meteorological stations in the study area using least-
squares polynomial curve-fitting with elevation [23].

We measured soil physiochemical variables, namely, soil
moisture, pH, total nitrogen (TN), total phosphorus (TP),
total organic carbon (TOC), water-soluble soil organic
carbon (WSOC), water-soluble soil organic nitrogen
(WSON), NO3

−-N, and NH4
+-N, according to previous

literatures [24, 25].

Geological variables

The mineral components of soil parent rock, including
quartz, plagioclase, K-feldspar, amphibole, muscovite, and
chlorite, were identified. We used individual minerals to
perform the principal component analysis (PCA, Fig. S3a),
and the first two axes of PCA accounting for 61.4% of the
total variance were used as explanatory variables repre-
senting the soil parent rock. Then, we measured metal
elements including Ca, Fe, Mg, Al, K, Na, Mn, and Ti. The
first two axes of PCA of these metal elements explaining
80.3% of the variance (Fig. S3b) were used to indicate
geochemical factors. We further computed several weath-
ering indices, such as the chemical index of alteration (ClA)
[26], and the Ti/Fe, Ti/Al, Mg/Al, and Ca/Al ratios. The
detailed measurements of mineral components and metal
elements were described in Supplementary Information.

Phospholipid fatty acids (PLFAs), glycerol dialkyl
glycerol tetraether (GDGT), and soil enzyme
activities

To further estimate microbial composition and biomass,
we analyzed PLFAs [27] and GDGTs [28]. The PLFAs
were extracted and measured according to previous litera-
ture [29], and the identified PLFA peaks were further
grouped into fungi, bacteria, actinomycetes, or protozoa
according to their origins [27]. The GDGTs, including
isoprenoid GDGTs (iGDGTs) and branched GDGTs
(bGDGTs), were extracted and estimated as previously
described [30]. The iGDGTs and bGDGTs were derived
from Archaea and bacteria, respectively [31]. To determine
the activity of soil enzymes, we measured β-glucosidase,
amylase, invertase, phenol oxidase, and cellulase as pre-
viously described [32]. More details on the extraction and
measurements of PLFAs, GDGTs, and soil enzymes could
be found in Supplementary Information.

Bacterial communities

DNA was extracted based on 0.5 g of frozen soils using the
FastDNA® SPIN Kit for Soil (MP Biomedicals, USA)

following the manufacturer’s instructions. DNA quality was
assessed with a NanoDrop ND-2000c UV–Vis spectro-
photometer (Thermo Fisher Scientific, USA). PCR ampli-
fication of the 16S rRNA gene hypervariable region V4 was
performed with the primers 515F (5′-GTGCCAGCMGC
CGCGGTAA-3′) and 806R (5′-GGACTACHVGGGTWT
CTAAT-3′) [33]. The 2 × 250 bp paired-end sequencing of
the PCR amplicons was conducted on a MiSeq platform
(Illumina, USA). Sequencing data were analyzed using an
in-house Galaxy software platforms [34] (IEG sequence
analysis pipeline, http://zhoulab5.rccc.ou.edu:8080), as
described in details in Supplementary Methods and
Table S2. To ensure that biodiversity estimates were not
biased or confounded by variation in sampling intensity
(Fig. S4), the bacterial communities were rarefied at
10,000 sequences for the following analyses. We welcome
future studies to support our current findings obtained from
rarefaction by applying other alternative approaches, such
as the mixture model framework proposed by McMurdie
and Holmes [35].

Estimating biological communities

We considered the plant and bacterial communities from
three facets: relative abundance, diversity, and community
composition. For plants, the relative abundance was calcu-
lated for different plant types (that is, tree, shrub, and herb)
and each species present in 5–95% of the samples. Species
richness was estimated using the number of plant species
for all plants and different plant types. Detrended corre-
spondence analysis (DCA) [36] with default 26 segments
(the same for the following analyses) was used to evaluate
changes in the plant community across different vegetation
zones or elevations. The plant community compositions
were represented by the first two DCA axes for all plants
and the different plant types. The analyses of species rich-
ness and DCA were performed using the R package vegan
V2.4.6 [37].

For bacteria, we considered the relative abundance at the
phylum level. OTUs were agglomerated at the phylum level
and the relative abundance was calculated. Species richness
was calculated using the number of OTUs for the whole
bacterial community and their phyla. We also estimated the
alternative metrics, such as Chao 1 [38] and phylogenetic
diversity [39] and found they showed strong correlations
with species richness (R2= 0.97 and 0.96, respectively).
Thus, we used species richness in the following analyses.
To represent the bacterial community compositions, we
used the first two axes of DCA for the whole bacterial
community and their phyla by using the total OTU table and
the OTU table of each bacterial phylum, respectively. We
selected 18 dominant bacterial phyla that were present in
more than 80% of the samples by following previous
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references [40], and such additional analyses were used to
support the findings obtained at the whole community level.
We divided the Proteobacteria phylum into different clas-
ses (hereafter phyla) because of the high relative abundance
and diversity of Proteobacteria and the different ecological
functions of these classes.

To summarize biodiversity, we computed a single-index
multidiversity (MD) as a synthetic measure [41] by using an
approach of averaging standardized values of the species
richness of plants and the whole bacterial community, and
also the species richness of dominant bacterial phyla. We
considered both the whole community and phylum levels
because that bacterial phyla have greater phylogenetic or
physiological diversity than those of animals and plants
[42, 43], and could show distinct biogeographical patterns
in biodiversity [40, 44].

Estimating ecosystem functions

Similar to plant and bacterial communities, we considered
ecosystem functions from three facets, that is individual
function, EMF, and the composition of ecosystem func-
tions. We quantified 38 ecosystem functions categorized by
five functional groups (Table S1): Plant biomass, microbial
biomass, enzyme activities, the abundance of photo-
synthetic bacteria, and soil nutrients. The composition
combination of these groups of ecosystem functions was
referred as “composition of ecosystem functions”. We
included a large number of ecosystem variables to
approximate as wide a range of different ecosystem func-
tions as possible [45]. For plant biomass, we considered the
biomass, the individual number, the mean height, and the
coverage of trees (firs, hardwoods, and softwoods), shrubs,
or herbs. For microbial biomass, we examined PLFA con-
centrations of the groups of bacteria, fungi, actinomycete,
and protozoa, and the concentrations of bGDGT, iGDGT,
GDGT-0, and Crenarchaeol. For photosynthetic bacteria,
we included the relative abundances of Cyanobacteria,
Rhodospirillales, Rhodocyclales, and Chlorobi. Finally, for
soil nutrients, we considered the concentrations of TOC,
TN, TP, WSOC, WSON, NH4

+-N, and NO3
−-N. Although

we have included 38 ecosystem functions, some important
functions are inevitably unmeasured, such as plant available
phosphorus, carbon fixation, and nitrogen fixation, and
future studies are encouraged to include more essential
functions for comprehensive understanding of ecosystem
functioning.

For EMF, we used an averaging approach, which aims to
collapse multifunctionality into a single metric that esti-
mates the average value of multiple functions observed in a
given sample [2]. We calculated Z-scores for all variables
evaluated, and the EMF was the average Z-score for all
functions measured for each sample. EMF's for all functions

and the above five functional groups were estimated. In
addition, in order to evaluate the effects of the number of
ecosystem functions on EMF, we calculated EMF using a
series of all possible combinations from 10 to 38 functions
with 1000 permutations. These EMF analyses were per-
formed by using the R package multifunc V0.8.0 [46].

For the composition of ecosystem functions, we used the
first two axis scores of DCA to assess the changes in the
compositions of all ecosystem functions and also specific
functional components, such as PLFAs, GDGTs, and
enzyme activities, across the vegetation zones or elevations.

Statistical analyses

We used the following variables, including those related to
contemporary environments and long-term geological pro-
cesses, as explanatory variables. Contemporary processes
included climate (i.e., temperature and precipitation), local
(i.e., soil pH and moisture), and biotic attributes (i.e., the
diversity and DCA of plants and bacteria). Geological
variables included soil parent rock (i.e., quartz, plagioclase,
K-feldspar, amphibole, muscovite, chlorite, and the first two
PCA axes of minerals) and weathering conditions (i.e., CIA,
Ti/Fe, Ti/Al, Mg/Al, and Ca/Al ratios, and the first two PCA
axes of metal elements). Detailed information about all
explanatory variables is listed in Table S3. The response
variables included biological communities (plants and
bacteria) and ecosystem functions at the three above-
mentioned facets, and were analyzed for their elevational
patterns and underlying drivers.

(1) Elevational breakpoints of plants, bacteria, and
ecosystem functions

The relationships between elevations and explanatory or
response variables were visualized with loess regression
models. We further tested the breakpoints or abrupt changes
for all explanatory and response variables along the eleva-
tional gradient using a piecewise linear regression analysis
[47, 48] with the R package SiZer V0.1.5. We calculated
bootstrapped confidence intervals for the breakpoint esti-
mates [48]. The sampling sites along the elevational gra-
dient on Galongla Mountain extend across the Indus-Yalu
suture zone fault, which is located at 2293–2438 m
(Fig. 1c). Therefore, we defined the elevational band for
potential breakpoints within the range of 1800–3000 m in
piecewise linear regressions. Furthermore, these breakpoint
estimations of the compositions of plants, bacteria, and
ecosystem functions were supported or explained by the
following statistical analyses.

First, we visualized the separation among sites or ele-
vations by the gradient of fitted contours, which implies a
linear relationship between elevations and DCA ordinations
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of the biological communities and ecosystem functions. We
further evaluated the significance of the compositional dif-
ferences among the elevational zones by the permutational
multivariate analysis of variance (PERMANOVA) method
with pseudo-F statistic [49]. Heterogeneity of multivariate
dispersion was not tested because PERMANOVA could
allow rigorous meaningful analysis of even those having
variables with extremely non-normal or overdispersed
behavior [50]. This analysis was performed using the R
package vegan V2.4.6 [37].

Second, we assessed the compositional changes and
identified the important breakpoints across multiple species
along the elevational gradient with gradient forest analysis
[51]. In addition, we also estimated the standardized density
of splits for bacteria across the taxonomic levels from genus
to phylum where we agglomerated OTUs and thus the
whole communities were considered at coarser taxonomic
levels than species. These analyses were performed using R
packages gradientForest V0.1.17 [51] and extendedForest
V1.6.1 [52].

Third, we examined the Bray–Curtis dissimilarity [53] of
biological communities or ecosystem functions between
pairs of adjacent elevations to identify abrupt elevational
compositional changes. The significance and magnitude of
dissimilarity differences between adjacent sites were eval-
uated with PERMANOVA method with pseudo-F statistic.
Within the elevation range of 1800–3000 m, we considered
the elevational breakpoint as the highest compositional
turnover between adjacent elevations, which is defined as
the highest pseudo-F statistic and dissimilarity value.

Fourth, we tested the regional consistency in elevational
breakpoints by further examining bacterial communities
from Gongga Mountain. This mountain is located on the
South-East Tibetan Plateau and is over 1000 km away from
Galongla Mountain. These two mountains have similar
latitudes at 29–30°N and the sampling sites shared the
elevation ranges from 1800 to 3800 m. Gongga Mountain is
a part of Hengduan Mountain range, and the elevations go
through a secondary Xianshui-he fault with contrasting
origins of rock formations (Fig. 1c). We collected the
bacterial 16S rRNA sequences (NCBI Accession number
PRJEB15866) from Li et al. [18], and processed the dataset,
along with our data with the bioinformatic methods as
described above. We examined the community variations
between the two mountains from the following three per-
spectives: (1) We visualized the bacterial community
compositions of the two mountains by DCA ordination with
the elevational gradient of fitted contours. (2) We examined
pairwise Bray–Curtis similarities between the bacterial
communities at similar elevations of the two mountains to
test the abrupt compositional changes along the elevational
gradients. (3) We calculated the community Bray–Curtis
similarities between each elevation of Gongga Mountain

and all lower (or upper) elevations of Galongla Mountain
and then examined the elevational patterns of these simi-
larities. The upper and lower elevations were defined
according to the elevational breakpoint identified from the
piecewise linear regression analysis on the whole commu-
nity compositions of plants or bacteria. The relationships
between the community similarity and elevation were fitted
and tested with a linear model and permutation tests in the R
package lmPerm V. 2.1.0 [54].

(2) Drivers of biological communities and ecosystem
functions

To evaluate the role or the relative importance of con-
temporary environments and long-term geological pro-
cesses on biological communities or ecosystem functions,
we performed various statistical methods, such as multi-
model averaging [55], gradient forest [51], multiple
regression, structural equation models (SEM) [56], variation
partitioning (VPA) [57], and random forest analyses
[58] (Fig. S2). In particular, the latter four analyses pro-
vided knowledge on whether the geological processes in the
models provide significantly additional predictive strength
for biological communities or ecosystem functions com-
pared with those models with contemporary environments
only. The analyses of multimodel averaging and SEM are
described as below, while the others are detailed in Sup-
plementary Information.

First, the multi-model approach could provide a quanti-
tative measure of the relative importance of each explana-
tory variable [55, 59]. Before doing the analyses, strongly
correlated variables were dereplicated according to their
correlation. Statistical dependence between the explanatory
variables was assessed using Pearson correlation coeffi-
cients (two-tailed). One of the two variables was selected if
their Pearson correlation is higher than 0.7. For plants and
bacteria, we used the diversity and compositions of the
whole plants and bacteria, and the relative abundance of
species as response variables. For ecosystem functions, we
used individual function, EMF and the composition of
ecosystem functions as response variables. All variables
were Z-score transformed to estimate the conditional model-
averaged parameter as standardized beta values, which
enable us to compare the influences of different explanatory
variables with different measurement units on biological
communities and ecosystem functions.

We further explored the relationships of EMF and
explanatory variables with the increasing number of func-
tions, using multimodel averaging and Pearson correlation
analyses. The relative influences of explanatory variables
were quantified for climate, parent rock, weathering, local,
and biotic variables, which was done by selecting variables
with the highest absolute standardized beta values. The
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multi-model averaging analysis was performed by using the
R package MuMIn V1.40.4 [60].

Second, SEM was used to test and quantify the inter-
active effects of contemporary environments and geological
variables on biodiversity MD or ecosystem functions EMF.
The approach begins by hypothesizing the underlying
structure of causal pathways as shown in Fig. 1a. Then,
the model is translated into regression equations, and these
equations are evaluated against the data to support or refute
the hypothesized paths. Through this process, SEM pro-
vides an understanding of direct and indirect effects of
contemporary and geological processes on MD or EMF. To
estimate the predictive strength of geological processes, we
fit separate models for predictor variables including and
excluding geological processes. ANOVA was used to test
the significance of these two separate models. Before
modeling, all variables in the SEMs were Z-score trans-
formed to allow comparisons among multiple predictors and
models. Similar to previous studies [61], we used composite
variables to account for the collective effects of climate,
parent rock, weathering, local, and biotic attributes, and the
candidate observed indicators were shown in Table S3.
The indicators for each composite were selected based on
the multiple regressions of MD or EMF and the formula for
calculating the composite variable for SEM models of MD
and EMF were shown in Table S4. Based on all the
hypothesized paths among composite variables (that is, full
model; Fig. 1a), we examined all alternative models using
AIC and overall model fit statistics [62]. We chose the final
model that met the model fit statistics with the lowest AIC
value. The detailed modeling fit indices for all alternative
models were provided in Table S5. Adequate model fits
were determined according to a non-significant χ2 test (P >
0.05), low AIC value, high comparative fit index (CFI >
0.95) and low standardized root mean squared residual
(SRMR < 0.05). We implemented SEMs using the R
package lavaan V.0.5.23 [63], which provides multiple-
latent variable models by utilizing path diagrams to explain
the underlying relationships in the models.

Results and discussion

Generally, for the elevational gradients of biological com-
munities and ecosystem functions, there were significant
(P < 0.05) elevational breakpoints that mostly occurred
at 2000–2800 m according to piecewise regression analyses
[47, 48] (Fig. 2a–c, Table S6). In particular, the elevational
variations for plant (Fig. 2g, S5a) and bacterial composition
(Fig. 2h, S5b) showed significant breakpoints at
~2400–2500 m. Both taxonomic groups showed the highest
compositional turnover around these breakpoints, which
was quantified by pairwise Bray–Curtis dissimilarity

(Fig. S6a, b) and gradient forest analyses [51] (Fig. 2d, e).
This finding is supported by bacterial compositional turn-
over from the phylum to genus levels (Fig. S7a) and is more
obvious toward higher taxonomic levels, such as class and
order levels (Fig. 2e, S7a). The EMF of all 38 ecosystem
functions, which is not likely to be affected by the number
of functions considered (Fig. S8), had a breakpoint at 2293
m (Fig. 2c). The EMF for the functional groups, such as
plant and microbial biomass and soil nutrients, showed
significant breakpoints at 2200–2400 m (Fig. 2c, S9).
Similar patterns were observed for elevational changes in
the composition of ecosystem functions (Figs. 2c, 2i, S5c)
and the highest compositional turnover occurred at
2600–2800 m (Fig. 2f, S6c). These breakpoints were par-
ticularly apparent for the compositions of some functional
groups, such as phospholipid fatty acids [27], glycerol
dialkyl glycerol tetraether [28], and extracellular enzymes
essential for carbon cycling and storage, based on eleva-
tional variations in their compositions (Fig. S10, S5d–f) and
the highest compositional turnover within the 1800–3000 m
range (Fig. S6d–f).

These consistent elevational breakpoints in the commu-
nity compositions of multiple taxonomic groups and eco-
system functions have less been reported in previous
studies. The breakpoint elevations of bacterial communities
are, however, unexpectedly consistent with those at
2600–2800 m for the diversity [18] and community com-
position (Fig. S11) of soil bacteria on Gongga Mountain
(Fig. 1d), which is located over 1000 km east of the studied
Galongla Mountain. Furthermore, the bacterial community
similarity between pairwise sites with similar elevations of
the two mountains was lowest at the breakpoint elevation of
2360 m (Fig. S11b). It should be noted that these two
mountains are from two different mountain ranges, Gang-
rigabu and Hengduan Mountains, which have different
orientations and mountain-building origins as a result of
collision and extrusion of tectonic plates or terraces
(Fig. 1b–d). Such breakpoint elevations are different from
the corresponding treelines at 3600–3700 m on the two
mountains and contrast with the reported breakpoints of soil
bacteria occurring at the treelines on the other mountains
[64]. Climate, such as temperature, is widely accepted to be
the primary control for the treeline formation and main-
tenance of biological communities [65]. Our findings
however indicate that biological communities and ecosys-
tem functions may not be always dominantly influenced by
climate, and further suggest their links to other new pro-
cesses, such as the legacies of geological events. This
argument is supported by two observations. First, the ele-
vational bands that contain breakpoints surprisingly coin-
cide with the locations of faults. Specifically, the Indus-
Yalu suture zone fault [66] and the Xianshui-he fault [67]
pass through the elevational bands of 2300–2500 m and
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2600–2800 m on the Galongla and Gongga Mountains,
respectively. Most of chemical characteristics, including
minerals, weathering indices, and soil properties, were

significantly (P < 0.05) different across the Indus-Yalu
suture zone fault (results not shown). Second, the fault
location on Galongla Mountain was supported by the

Fig. 2 Elevational patterns of plants, bacteria, and ecosystem
functions. a–c The boxplots of elevational breakpoints (i.e., elevations
with abrupt changes, colored dots) revealed by piecewise regression
analyses [47, 48]. We considered three facets of plants: diversity and
community composition (Comp) of whole plants and their types, and
relative abundance (RA) of plant types and species. For bacteria, three
facets are: diversity and community composition of whole bacteria and
their phyla, and relative abundance of bacterial phyla. For ecosystem
functions, three facets are: ecosystem multifunctionality (EMF) and
composition of all ecosystem functions and their functional groups,
and individual functions (Indiv). The average value of breakpoint
elevations for each facet is shown with black point. The standardized
density of splits showing where important changes in the abundance of
multiple species or functions occur along the elevational gradient and
indicating the compositional turnover. The standardized density of
splits was determined by gradient forest analyses [51] for the species
level of plants (d) and bacteria (dashed line, e), the class level of
bacteria (solid line, e), or 38 ecosystem functions (f). The vertical

dashed lines show the 1800–3000 m elevation ranges. One main peak
within 1800–3000 m elevation ranges was more obvious at class than
species level of bacteria. This is because broader taxonomic classifi-
cation may balance the distribution uncertainty associated with finer
taxonomic resolution and strengthen the phylogenetic conservatism
[80]. Detrended correspondence analysis (DCA) plots of the compo-
sition of plants, bacteria, and ecosystem functions. DCA analyses were
based on the species level of plants (g) and bacteria (h), and 38 eco-
system functions (i). The contours in gray indicate linear relationships
between DCA ordination values and elevations. The compositional
differences among pairwise elevations were analyzed to determine the
highest compositional turnover as shown with bold lines (Fig. S5).
Vegetation zones comprise tropical monsoon rain forest (TRF), sub-
tropical evergreen broadleaved forest (EBF), subtropical evergreen and
semi-evergreen broadleaved forest (SEBF), temperate mixed con-
iferous broadleaved forest (TCF), frigid-temperate coniferous forest
(FCF), and frigid shrub meadows (FSM).
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elevational profile of the geological variables, such as the
parent rock and weathering conditions, which showed
breakpoints at ~2400 m on average (Fig. S12).

Further statistical analyses to explore the key drivers of
biological community and ecosystem functions reveal that
both short- and long-term processes showed profound

influences, including climate, parent rock, weathering,
local, and biotic variables (Fig. 3, S7b, S13–S19). Among
contemporary variables, mean annual temperature and soil
pH had the strongest effects on the plant and bacterial
communities, respectively (Fig. 3a, b, d, e). Ecosystem
functions were most strongly affected by soil moisture,

Fig. 3 Relative importance of contemporary and geological pro-
cesses on plants, bacteria and ecosystem functions. First, the relative
importance was quantified by the weighted averaging of parameter
estimates over best-fitting models [59] by including the five groups of
predictors (Fig. 1a): climate, parent rock, weathering, local, and biotic
attributes. For plant (a, d) and bacterial (b, e) communities, we con-
sidered three facets: diversity (a, b), composition (Comp, a, b), and
relative abundance (RA) of species (d, e). For ecosystem functions (c,
f), the three facets are: ecosystem multifunctionality (EMF, c), the
composition of ecosystem functions (c) and individual function (Indiv,
f). Data in d–f are presented as the means ± s.e. Moreover, compared
with the models of contemporary variables, we quantified the
improvements in the explained variances by further including

geological variables based on stepwise multiple regressions and
Akaike’s information criterion [81]. Relative to those in the models of
contemporary variables, the improvements in the explained variances
by including geological processes were shown as the percent increases
in the model R2 on the three facets of plant (g) and bacterial (h)
communities and ecosystem functions (i). The significance in model R2

increase was determined with ANOVA between the models including
and excluding geological variables. The values in parentheses indicate
the percentage of significant R2 increases among all possible models of
contemporary variables for each facet. Black points in the boxplots are
the mean values for each facet. The response variables were the same
variables at three facets of plants, bacteria, and ecosystem functions as
mentioned in Fig. 2a–c.
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followed by plant communities (Fig. 3c). These findings
support previous reports showing the important roles of
contemporary environments, such as climate and local
abiotic variables, in controlling global biodiversity
[4, 11, 68–72] and the roles of local abiotic variables and
biodiversity in regulating ecosystem functioning [2, 73–75].

Furthermore, geological processes were found to be
important as well in not only the plant and bacterial com-
munities, but also ecosystem functions. For instance, bac-
teria were strongly correlated with weathering indices, that
is, the chemical index of alteration [26] and the Ca/Al ratio,
when we considered the three facets of bacteria: the diver-
sity and community compositions of total bacteria (Fig. 3b)
and their phyla (Fig. S17), and the relative abundance of
species (Fig. 3e). These facets of plants were significantly
(P < 0.05) correlated with the Ca/Al ratio, the geochemical
composition, and primary minerals, such as muscovite,
plagioclase, and quartz (Fig. 3a, d). EMF and the compo-
sition of ecosystem functions were also influenced by plant
communities, as well as by weathering indices, such as Mg/
Al and Ti/Fe ratios (Fig. 3c, f). Furthermore, for the three
facets of plant and bacterial communities and ecosystem
functions, we found improvements in the explained var-
iances in the models by including geological processes, of
67.9 and 35.9% on average for plant and bacterial

communities, respectively, and of 27.6% on average for
ecosystem functions, relative to those in the models
excluding geological processes (Fig. 3g–i). Thus, these
findings suggest biological communities or ecosystem
functions are driven by common mechanisms, that is con-
temporary environments and the new driver as long-term
geological processes.

However, the interactive effect of the contemporary
environments and long-term geological processes remains
poorly understood. We thus applied SEMs [56] to statisti-
cally synthesize their hypothesized relationships (Fig. 1a).
To summarize biodiversity, we computed a single-index
MD parameter as a synthetic measure [41] by including the
species richness of plant and whole bacterial community,
and also the species richness of bacterial phyla. When all
possible links among these two processes and ecosystem
properties were considered (Fig. 1a), geological variables
were retained in the final best-fitting SEMs and were
revealed to improve the predictive power of the MD and
EMF indices (Fig. 4, S20, Tables S5, S7, S8).

Furthermore, our SEMs showed that geological pro-
cesses had divergent effects on MD and EMF due to the
differences in their influence strength and directions. First,
geological processes had a greater effect on MD than they
did on EMF—after including geological variables, the

Fig. 4 Structural equation
models of biodiversity and
ecosystem functions. The
biodiversity and ecosystem
functions are quantified with
single-index multidiversity
(MD) and ecosystem
multifunctionality (EMF),
respectively. Best-fitting models
illustrate the effects of predictor
variables on MD (a, b) or EMF
(c, d) by excluding (a, c) or
including (b, d) geological
variables. R2 denotes the
proportion of variance explained
for endogenous variables. Gray
and black arrows indicate
statistically non-significant and
significant (***P < 0.001, **P <
0.01, *P < 0.05) relationships,
respectively. Arrow widths and
accompanying numbers are the
relative effects (that is,
standardized path coefficients)
of modeled relationships.
Composite and observed
variables are indicated in ovals
and rectangles, respectively.
More details on the model fit are
summarized in Table S5.
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explained variations of the MD and EMF models were
improved by 8.7% and 1.5%, respectively, but only the
improvement of the MD model was significant (P < 0.001,
ANOVA) (Fig. 4a, b). Such divergent effects on MD and
EMF are probably because biodiversity is functionally
redundant [76, 77], so that the changes in MD do not
necessarily alter EMF. Second, geological variables showed
direct effects on MD, and mainly indirect influences on
EMF via the interactions with biodiversity and con-
temporary abiotic environments. Specifically, geological
factors, such as parent rock compositions, had strong cor-
relations (R > 0.55, P= 0) with weathering and showed
total indirect effects of 0.38 and 0.34 on MD and EMF,
respectively (Fig. 4b, d, Table S9). Weathering had sig-
nificant direct effects on both MD (R= 0.30, P= 0) and
EMF (R= 0.16, P= 0.008) and a strong indirect effect of
0.43 on EMF via local and biotic variables (R > 0.47, P= 0;
Fig. 4b, d). Such divergent effects of geological processes
were further statistically supported by variation partitioning
analyses [57] (Fig. S21) and random forest analyses [58]
(Fig. S22). For instance, the geological variables alone
explained ~10.0% and 1.0% of the variation in MD and
EMF, respectively (Fig. S21), and improved the predictive
power of MD and EMF by 4.3% and 3.9%, respectively
(Fig. S22). Thus, beyond those known from previous stu-
dies [2, 3, 11], our findings reveal additional links between
geological processes relevant to tectonic dynamics and
biological community or ecosystem functions, as previous
studies of ecosystem functions have been largely concerned
with effects of contemporary biotic and abiotic factors.

Because geological processes related to tectonic plate
collision and faults are important on the Tibetan Plateau and
in other biodiversity hotspots in mountain regions, our
findings have several substantial implications regarding the
effects of geological processes on biodiversity and ecosys-
tem functions.

Firstly, our findings highlight the need to integrate data
relating to the long-term geological history when making
current inferences and future predictions of biodiversity or
ecosystem functioning. This study, for the first time, include
geological processes to quantify the relative contributions of
past geological events on microbial communities and eco-
system functions. Our findings indicate that past geological
processes leave a strong signature on the current distribu-
tional patterns of biodiversity and overall ecosystem func-
tioning. Specifically, both parent rock and weathering had
an indirect influence on ecosystem functions, whereas
weathering had a considerable direct effect on biodiversity.
Thus, our experimental strategy of explicitly considering
geological events could be adopted, as it may facilitate the
possibility of identifying and strengthening of the effects of
geological processes on the biodiversity and ecosystem
functioning.

Secondly, it is possible that elevational breakpoints of
biodiversity may be observed in other geological regions
with tectonic faults, and that biological communities could
serve as indicators of past geological events, such as the
formation of terrace boundaries or faults. This is because
the consistent elevational breakpoints on the Galongla and
Gongga Mountains are largely affected by faults attributed
to past geological processes, even though these geological
influences are from two different mountain ranges on the
South-East Tibetan Plateau. The consistency in break-
points on the two mountains indicates that the distribu-
tional patterns of biodiversity in other regions on the
Tibetan Plateau or even around the world might show
abrupt changes in similar and predictable ways across
faults or even terrace boundaries. However, we should
note that this implication of biological indicators was
speculated based on two mountains, and current findings
need further supports from other mountains, regions and
continents.

Finally, further studies are encouraged to study the
legacies of past geological events on biological commu-
nities and ecosystem functions, involving sampling along
multiple elevational transects across faults and consider-
ing further more taxonomic groups with fine-resolution
analytical approaches. For example, the studies in fungi
[4] and animals [11, 78] or in multiple regions with
similar geological processes, such as plate collision and
tectonic faults, would be required to confirm the gen-
erality of our conclusions regarding the new links between
long-term geological processes and biodiversity or eco-
system functioning. Furthermore, future studies are
encouraged to include other drivers important for
observed biogeography of plants and animals, such as
seasonality, climate zones and geographical regions, at
multiple time points in sampling strategy for compre-
hensive conclusions. A population ecology approach
could be further applied to improve the methodology by
evaluating genome legacies from a biological evolu-
tionary perspective [79].
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