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Increasing evidence has emerged for non-random spatial distributions of microbes, but knowledge
of the processes that cause variation in microbial assemblage among ecosystems is lacking. For
instance, some studies showed that deterministic processes such as habitat specialization are
important, while other studies hold that bacterial communities are assembled by stochastic forces.
Here we examine the relative influence of deterministic and stochastic processes for bacterial
communities from subsurface environments, stream biofilm, lake water, lake sediment and soil
using pyrosequencing of the 16S ribosomal RNA gene. We show that there is a general pattern in
phylogenetic signal in species ecological niches across recent evolutionary time for all studied
habitats, enabling us to infer the influences of community assembly processes from patterns of
phylogenetic turnover in community composition. The phylogenetic dissimilarities among-habitat
types were significantly higher than within them, and the communities were clustered according to
their original habitat types. For communities within-habitat types, the highest phylogenetic turnover
rate through space was observed in subsurface environments, followed by stream biofilm on
mountainsides, whereas the sediment assemblages across regional scales showed the lowest
turnover rate. Quantifying phylogenetic turnover as the deviation from a null expectation suggested
that measured environmental variables imposed strong selection on bacterial communities for
nearly all sample groups. For three sample groups, spatial distance reflected unmeasured
environmental variables that impose selection, as opposed to spatial isolation. Such characteriza-
tion of spatial and environmental variables proved essential for proper interpretation of partial
Mantel results based on observed beta diversity metrics. In summary, our results clearly indicate a
dominant role of deterministic processes on bacterial assemblages and highlight that bacteria show
strong habitat associations that have likely emerged through evolutionary adaptation.
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Introduction

A major theme of ecological research is characteriz-
ing the processes underlying spatial variation in
biotic communities (that is, beta diversity) across

Earth’s ecosystems (Hubbell, 2001; Martiny et al.,
2006; Anderson et al., 2011). It has been recognized
that habitat specialization resulting from the adap-
tive evolution by means of natural selection
(Darwin, 1859) has a pivotal role in determining
community composition (for example, Graham and
Fine, 2008; Cavender-Bares et al., 2009). This is a
classic deterministic process driven by contempor-
ary environmental heterogeneity. However, variation
in communities is also influenced by stochastic
processes such as dispersal limitation, mass effects
and random demographics (Hubbell, 2001; Leibold
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et al., 2004; Cottenie, 2005; Martiny et al., 2006;
Vellend, 2010; Chase and Myers, 2011).

Although stochastic and deterministic processes
have long been studied in plant and animal systems,
extensive study of these processes in microbial
communities has emerged only in the past decade
(Besemer et al., 2012; Hanson et al., 2012 and
references therein). These studies provide strong
evidence of biogeographical patterns for microbes,
the distance–decay relationship being one example
(for example, Martiny et al., 2006). However, still
little is known about the processes that underlie
non-random distributions of microbes.

Meta-analysis have shown that bacterial commu-
nities differ substantially among-habitat types (for
example, Lozupone and Knight, 2007; Delmont
et al., 2011), with salinity being a key factor
structuring microbial communities (Lozupone and
Knight, 2007). These patterns suggest a dominant
role of habitat specialization for microbial commu-
nity assembly. However, the inconsistency of public
microbial gene sequences or experimental methods
and inaccessibility of consistent environmental
information prevent more detailed profiles on the
relative influence of deterministic and stochastic
processes. Further, processes governing between-
habitat variation in community composition may
differ from those responsible for variation within
habitats. Until now, few studies on microbial
communities have characterized biogeographical
patterns and underlying processes across- and
within-habitat types.

Even with consistent microbial and environmental
data sets, there are important factors to be considered
when charactering underlying processes. For exam-
ple, contemporary environmental variables measured
in the field are typically spatially autocorrelated and
some ecologically important variables may be left
unmeasured, both factors complicate the inferences
related to the relative influences of stochastic and
deterministic processes. However, methods from
macro-organism ecology may provide good solutions
to these challenges. In particular, coupling the spatial
variation of phylogenetic community structure (Webb
et al., 2002) with null models can help characterize
the relative influences of deterministic and stochastic
processes (Graham and Fine, 2008; Chase and Myers,
2011; Stegen et al., 2012).

Inferring underlying ecological processes using
phylogenetic information requires phylogenetic signal
in habitat association (Losos, 2008; Cavender-Bares
et al., 2009). Following detection of phylogenetic
signal, within a phylogenetic framework (Graham and
Fine, 2008; Chase and Myers, 2011; Fine and Kembel,
2011; Stegen et al., 2012), we propose a three-step
procedure to characterize the relative influences of
deterministic and stochastic processes.

First, we test for an influence of deterministic
processes by comparing observed phylogenetic
turnover between assemblages to a stochastic
expectation that controls for observed turnover in

taxonomic composition. Significant deviations from
the stochastic expectation indicate that determinis-
tic processes such as environmental filtering
strongly influence community composition.

Second, we use a new approach to reveal influences
of unmeasured environmental variables by relating
phylogenetic null model deviations to environmental
and spatial distances. A significant relationship with
spatial distances, after controlling for environmental
distances, suggests that unmeasured environmental
variables impose deterministic processes that over-
whelm any influences of stochastic processes. This is
because stochastic processes should not cause phylo-
genetic null model deviations (Hardy, 2008).

Third, we evaluate the relative influences of
deterministic and stochastic processes by consider-
ing results from the previous step and additional
analyses that relate observed phylogenetic turnover
to spatial and environmental distances: a stronger
influence of stochastic versus deterministic pro-
cesses can be inferred if null model deviations are
not related to spatial distance and if observed
phylogenetic turnover increases with spatial dis-
tance to a greater degree than environmental
distance. We infer that deterministic processes have
more influence than stochastic processes if observed
phylogenetic turnover correlates more strongly with
environmental than with spatial distances (Stegen
and Hurlbert, 2011). We also infer a greater influ-
ence of deterministic processes if null model
deviations increase with spatial distance, which
suggests that any influence of spatial isolation is
overwhelmed by environmental selection imposed
by unmeasured environmental variables.

Here, we analyzed bacterial assemblages from
aquatic and terrestrial subsurface environments, as
well as lake water, stream biofilm, lake sediment
and soil using pyrosequencing of the 16S ribosomal
RNA gene. It should be noted that although previous
microbial work has examined most of Earth’s major
ecosystems, aquatic and terrestrial subsurface
environments have received little attention. Com-
pared with previous meta-analyses that incorporate
among-habitat comparisons (for example, Lozupone
and Knight, 2007), we examine a broad range
of habitats using more consistent methods to
characterize community and environmental data.

In addition to evaluating phylogenetic signal and
inferring ecological processes across habitats, our
study aims to (1) examine whether bacteria show
clear habitat associations, that is, whether community
composition differs among sampled habitat types; and
(2) compare among-habitat types the rate at which
community composition turns over through space.

Materials and methods

Data collection
We collected bacterial samples from aquatic or
terrestrial subsurface sediment, lake water, stream
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biofilm, lake surface sediment and soil (Table 1).
Sequences generated from pyrosequencing of
bacterial 16S ribosomal RNA gene amplicons were
processed using QIIME pipeline (v1.2) (Caporaso
et al., 2010). Details related to sample collection,
DNA sequencing and analyses are described in the
supplementary text and Wang et al. (2012a). Opera-
tional taxonomic units (OTUs) were defined using a
97% sequence similarity cutoff. We accounted for
differences in sampling effort among samples by
randomly subsampling 1000 sequences per sample
for 1000 times.

Statistical analyses
To evaluate phylogenetic signal across a range of
phylogenetic depths, we used Mantel correlograms
with 999 randomizations for significance tests
(Oden and Sokal, 1986; Diniz-Filho et al., 2010)
with the function ‘mantel.correlog’ in the R package
Vegan v2.0-2 (http://vegan.r-forge.r-project.org). We
partitioned phylogenetic distances into classes (that
is, evolutionary time steps; here 0.02 units) and
within each distance class we found the correlation
coefficient relating between-OTU phylogenetic dis-
tances to environmental-optimum distances (Diniz-
Filho et al., 2010). This method has the advantage of
characterizing shifts in phylogenetic signal across
phylogenetic distance classes (Diniz-Filho et al.,
2010). An environmental-optimum for each OTU
was found for each environmental variable as in
Stegen et al. (2012). Between-OTU environmental-
optimum differences were calculated as Euclidean
distances using optima for all the environmental
variables.

To quantify phylogenetic turnover in community
composition between a given pair of samples (that is
‘phylogenetic beta diversity’ or ‘phylobetadiver-
sity’), we used unweighted Unifrac (Lozupone and
Knight, 2005) and the mean nearest taxon distance

separating OTUs in two communities (betaMNTD)
(Fine and Kembel, 2011; Stegen et al., 2012).
BetaMNTD is the mean phylogenetic distance to
the closest relative in a paired community for all
taxa (Fine and Kembel, 2011) and is sensitive to the
changes of lineages close to the phylogenetic tips.

We performed non-metric multidimensional
scaling based on unweighted Unifrac and
betaMNTD to depict community composition in
two dimensions. To test the hypothesis that habitat
types structure the distribution of bacteria, permuta-
tional multivariate analysis of variance was used
(Anderson, 2001).

For each habitat, a standardized effect size
(ses.betaMNTD) was computed as the number of
standard deviations that observed betaMNTD
departed from the mean of null distribution (999
null iterations) based on random shuffling of OTU
labels across the tips of the phylogeny (Hardy, 2008;
Fine and Kembel, 2011; Stegen et al., 2012). This
randomization holds constant observed species
richness, species occupancy and species turnover.
It therefore provides an expected level of betaMNTD
given observed species richness, occupancy and
turnover. The absolute magnitude of ses.betaMNTD
reflects the influence of deterministic processes; the
larger the magnitude, the greater the influence of
deterministic, niche-based processes.

To examine variation in phylobetadiversity within
the nine sample groups (those with sample
numberX10, Table 1), we used a distance-based
approach (Martiny et al., 2006; Tuomisto and
Ruokolainen, 2006) akin to distance–decay analysis
where phylogenetic dissimilarity is related to spatial
and environmental distance among sampled com-
munities. Environmental distance was measured as
Euclidean distance using all environmental vari-
ables standardized to have a mean of zero and a
standard deviation of one. Phylobetadiversity was
regressed against spatial or environmental distances

Table 1 Brief description of the sample groups with different habitat types

Sample group Location Sample numbera Sampling date Habitat types Description

KL1 31.4411N, 120.8141E 12 2010-01 Surface sediments (0–1 cm) Kuilai Lake
KL7 31.4411N, 120.8141E 12 2010-07 Surface sediments (0–1 cm) Kuilai Lake
ThS 31.1921N, 120.1061E 27 2010-06 Surface sediments (0–1 cm) Taihu Lake
SC 261–341N, 981–1031E 25 2009-10 Surface sediments (0–1 cm) Lakes in Sichuang Regions
KSS 35.7371N, 92.8811E 2 2010-09 Surface sediments (0–1 cm) Kusai Lakeb

KS 35.7371N, 92.8811E 28 2010-09 Subsurface sedimentsc Kusai Lake
LG 27.7131N, 100.7721E 20 2008-10 Subsurface sediments Lugu Lake
NJ 32.0611N, 118.7891E 5 2010-11 Subsurface soilc A park in Nanjing City
ZJ 29.9441N, 121.0151E 7 2010-06 Surface soils (0–4 cm) Fields in Zhejiang Province
HX 35.7821N, 92.9741E 10 2010-09 Surface soils (0–4 cm) Qinghai–Tibetan plateau
STR 26.8431N, 99.9641E 24 2009-11 Stream biofilm Laojun Mountains
ThW 31.1921N, 120.1061E 27 2010-06 Lake water Taihu Lake

aNon-metric multidimensional scaling was applied for all sample groups. Mantel correlograms (that is, the test of phylogenetic signal) and
variations in phylobetadiversity (Unifrac, mean nearest taxon distance separating OTUs in two communities (MNTD) or standardized effect size
of MNTD) were only examined for sample groups withX10 samples.
bKusai Lake is a saline lake with a salinity of B17%. Owing to the paleo-environmental changes in the Kusai Lake regions, the lake salinity varied
in the past 2000 years (Liu et al., 2009). The other lakes or streams (Wang et al., 2011) are freshwater.
cSubsurface sediments: 1 cm below lake floor; subsurface soils: 10 cm below land surface.
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using a Gaussian generalized linear model. Signifi-
cance was determined using Mantel tests (Spear-
man’s correlation) with 9999 permutations
(Legendre and Legendre, 1998). We used an analysis
of covariance with permutation to test the hypoth-
esis that the regression slopes do not differ among
the sample groups. Further, partial Mantel tests were
used to assess the relationship between phyloge-
netic turnover and spatial or measured environ-
mental distance after accounting for measured
environmental distance or spatial distance, and the
significance was assessed using 9999 permutations.
These analyses were performed in the R environ-
ment with Picante v1.4 (http://picante.r-forge.
r-project.org) and Vegan v2.0-2

Finally, we inferred the underlying processes
following the three steps listed in the Introduction
section. For instance, the variation in the magnitude
of ses.betaMNTD should be driven primarily by
variation in the influence of deterministic processes
as deviations from the betaMNTD null model
expectation are primarily due to niche-based
processes (Hardy, 2008). Significant increases
in ses.betaMNTD with increasing environmental
distances therefore implies that the influence of
niche-based processes grows with increasingly large
shifts in measured environmental conditions (Fine

and Kembel, 2011; Stegen et al., 2012). Importantly,
significant increases in ses.betaMNTD with increas-
ing spatial distances implies that the influence of
niche-based processes grows with increasingly large
shifts in spatially structured, but unmeasured
environmental conditions.

Results

Mantel correlograms consistently showed signifi-
cant positive correlations across short phylogenetic
distances for all nine sample groups (Po0.05,
Figures 1a–i). The phylogenetic distance across
which there was significant phylogenetic signal
varied from 10% to 30% of the maximum phyloge-
netic distance within each phylogeny. For nearly all
sample groups (except for KL1 in Figure 1a),
there were significant negative correlations at inter-
mediate phylogenetic distances (Po0.05) and non-
significant relationships across longer distances
(Figures 1b–i).

Non-metric multidimensional scaling using both
unweighted Unifrac and betaMNTD showed that
samples were phylogenetically segregated by
habitat type (Figures 2a and c). For each sample
group, the Unifrac metric showed higher values than

Figure 1 (a-i) Pearson correlation resulting from Mantel correlogram between the pairwise matrix of OTU niche distances and phylogenetic
distances (with Jukes–Cantor model) for each sample group with 9999 permutations. Significant correlations (Po0.05, solid circles) indicate
phylogenetic signal in species ecological niches, and were consistently found across short phylogenetic distances for all sample groups.
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betaMNTD and the range of unweighted Unifrac was
smaller than that of betaMNTD (Figures 2b and d).
Community differences among-habitat types were
also observed across short spatial distances, that is,
there were large differences in community composi-
tion between surface sediments and lake water in
Taihu Lake (Supplementary Figure S1A) or between
soils and lake sediments in Kusai Lake regions
(Supplementary Figure S1B). Analyses of permuta-
tional multivariate analysis of variance showed
that habitat type explained 50.0% and 21.2% of
the variation in community composition, using
betaMNTD and Unifrac metrics, respectively
(Po0.001, 9999 permutations).

A plot of pairwise phylobetadiversity versus
spatial distance showed that there was a significant
distance–decay relationship for most of the sample
groups: six out of nine using Unifrac (Figure 3,
Supplementary Table S1) or five out of nine using
betaMNTD (Supplementary Figure S2, Supple-
mentary Table S2). For both metrics, the slope of
this relationship varied significantly among most
groups (Po0.01), with the following decreasing
order in spatial turnover rates: KS4LG4STR4
ThS4ThW4SC.

Except for sample groups KL1, KL7 and ZJ, mean
values of ses.betaMNTD were significantly different
from the expected value of zero (Po0.001, t-test;
Supplementary Figure S3). After controlling
for spatial distance, environmental distance was

significantly correlated with ses.betaMNTD within
seven sample groups (Table 2). Spatial distance was
significantly (Po0.05) correlated with ses.beta-
MNTD for five sample groups (Supplementary
Figure S4). However, after controlling for environ-
mental distance, spatial distance was significantly
correlated with ses.betaMNTD only in ThS, KS and
STR (partial Mantel test, Po0.05; Table 2).

There were six sample groups in which ses.be-
taMNTD was not significantly related to spatial
distance after controlling for environmental distance
(Table 2). In five out of these six groups unweighted
Unifrac and betaMNTD were more strongly related
to environmental distance (after controlling for
spatial distance) than to spatial distance (after
controlling for environmental distance; Supple-
mentary Table S1, S2). The exception was group
HX, for which all beta diversity metrics showed no
relationship to spatial or environmental distances.

Discussion

Here we studied a broad range of ecosystems to
assess patterns of microbial community composition
and the processes that underlie these patterns. To do
so, we have characterized patterns of spatial turn-
over in the phylogenetic composition of microbial
communities, and have inferred processes by
comparing phylogenetic turnover to null model

Figure 2 Non-metric multidimensional scaling plots (a, c), or boxplots (b, d) of community dissimilarities within-habitat groups using
unweighted Unifrac and betaMNTD, respectively. The samples are colored by habitat groups. The habitat types include lake surface
sediments (KL, ThS and SC), lake subsurface sediments/soils (KS LG and NJ), surface soils (ZJ and HX), stream biofilm (STR) and lake
water (ThW). Two surface sediments from Kuisai Lake (KSS) are not included in KS group. KL1 and KL7 indicate the surface sediments
sampled from Kuilei Lake in January and July, respectively. More details on the abbreviation of groups, see Table 1 and the
supplementary text. Components of the box are: top of the box, upper hinge; midline of box, median; bottom of box, lower hinge; bars, 1.5
times length of box (1.5 times the horizontal spread); dots, values that are 4 or o1.5 times the horizontal spread of the distribution, plus
the upper or lower hinge.
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Figure 3 The relationships between unweighted Unifrac and spatial distance for different sample groups. (a–d) Lake surface sediments;
(e, f) lake subsurface sediments; (g) soils; (h) stream biofilm and (i) lake water. The regression slopes of the linear relationships based on
Gaussian generalized model are shown with solid (statistically significant, ranked Mantel test, 9999 permutations, Po0.05) or dashed
(statistically nonsignificant, P40.05) lines. The significant slope (unweighted Unifrac per 103 km) is shown in each sample group panel.
Detailed Mantel statistics are shown in Supplementary Table S1.

Table 2 Mantel and partial Mantel tests for the correlation between ses.betaMNTD and the explanatory distances (elevational,
geographic and environmental distance) using Spearman’s rho for different habitat types and spatial scales

Ses.betaMNTD Local Regional

Effects of Controlling for Surface
sediments

Lake
water

Subsurface
sediments

Stream
biofilm

Surface
sediments

KL1 KL7 ThS ThW LG KS STR SC

Geographic 0.151 0.202 0.353*** 0.244** 0.177* 0.394*** 0.376** 0.145
Environmental 0.338** 0.404* 0.406*** 0.386*** 0.407*** 0.413** 0.410*** 0.387**
Elevational 0.734*** 0.157
Geographic Environmental 0.078 0.140 0.173* 0.074 � 0.067 0.317*** 0.240* 0.029

elevational � 0.413* 0.125**
Elevational Environmental 0.668* 0.059

geographic 0.745* 0.139**
Environmental Geographic 0.315* 0.380* 0.273* 0.316** 0.378*** 0.341** 0.296* 0.364*

elevational � 0.007* 0.363**

The significances are tested based on 10 000 permutations. ***Po0.001; **Po0.01; *Po0.05. For the HX group, both the geographic and
environmental distances were not significantly related to bacterial phylogenetic turnover (P40.05). For ZJ and NJ groups, the Mantel analyses are
not conducted because of their lower sample numbers (7 and 5, respectively).
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expectations. This pattern-to-process linkage
requires phylogenetic signal in microbial habitat
associations. Compared with previous microbial
studies, we used a more statistically robust method
to test phylogenetic signal. We used this updated
method to provide the broadest evaluation of phylo-
genetic signal in microbes to date, and find signifi-
cant phylogenetic signal across all evaluated habitats.
Further, we used a novel statistical approach to test
for deterministic processes governed by unmeasured
environmental variables. The ability to detect deter-
ministic influences by unmeasured environmental
variables proved critical for understanding the
relative balance between deterministic and stochastic
processes.

Phylogenetic signal varies with phylogenetic distance
Inferring ecological processes using phylogenetic
information requires phylogenetic signal (Losos,
2008) in ecological niches (Cavender-Bares et al.,
2009). Recent studies on freshwater Actinobacteria
(Newton et al., 2007), marine bacterioplankton
(Andersson et al., 2010) and subsurface bacteria
(Stegen et al., 2012) have indicated there is a
positive relationship between phylogenetic dis-
tances and ecological differences among close
relatives. Our Mantel correlogram analyses support
this finding: significant phylogenetic signal was
consistently detected across all studied habitat
types, but only across short phylogenetic distances.
This is also supported by regressing habitat differ-
ences against phylogenetic distances between pairs
of OTUs (the same procedures in Stegen et al.,
2012), which also showed a clear positive relation-
ship across the short phylogenetic distances for all
sample groups (Supplementary Figure S5). More
quantitatively, significant phylogenetic signal was
found at up to 10–30% of the maximum observed
phylogenetic distance. This is consistent with
Stegen et al. (2012) who found up to 13–15% of
the maximum phylogenetic distance for terrestrial
subsurface bacteria. This general pattern in phylo-
genetic signal strongly indicates that closely related
bacterial taxa are ecologically coherent and that
interspecies gene exchange, such as horizontal gene
transfer (Popa and Dagan, 2011), does not eliminate
such ecological coherence at the scale of bacterial
metacommunities (see also in Philippot et al., 2010;
Wiedenbeck and Cohan, 2011; Stegen et al., 2012).

Unexpectedly, across intermediate distances there
were significant negative correlations between phy-
logenetic and ecological distances. This may suggest
convergent evolution, that is, that distinctly related
lineages acquire the similar ecological niches, across
intermediate phylogenetic distances. We are una-
ware of other work showing convergent evolution
across free-living bacteria, but the same genes are
often lost in obligate intracellular bacteria from
different phyla, suggesting evolutionary conver-
gence (Merhej et al., 2009). More generally,

evolutionary convergence may have a role in
common functions for complex symbiont commu-
nities across phylogenetically divergent hosts (Fan
et al., 2012). However, the causes and consequences
of convergent evolution in free-living microbial
communities are unclear, but warrant further study.

Taken together, our results combined with previous
studies, indicate a general pattern in the phylogenetic
structure of bacterial ecological niches: conserved
niches/traits across short phylogenetic distances,
convergent niches/traits across intermediate distances
and random niches/traits across large distances. As
functional and phylogenetic beta diversity for soil
microbes were closely correlated (Fierer et al., 2012),
and there is a phylogenetic signal for 93% functional
traits in micro-organisms (Martiny et al., 2012), it
would be interesting to use other molecular markers
(functional genes, for instance) to test phylogenetic
signal at finer phylogenetic scales within a hierarchy
of environmental factors (see Martiny et al., 2009).
Nevertheless, this observation has two important
implications. First, strong phylogenetic signal across
short phylogenetic distances indicates that ecological
processes can be inferred by studying spatial or
temporal patterns in the phylogenetic structure of
communities. Second, it suggests that ecological
inferences are most robust when made using metrics
of nearest neighbor distances (for example, beta-
MNTD). These metrics focus on relatively short
phylogenetic distance such that phylogenetic struc-
ture carries ecologically relevant information.

Turnover rate in community composition varies among
habitats
Our results showed much greater turnover in
community composition between habitats than
within habitats. This suggests that bacteria are
specialized on particular habitats and is consistent
with former meta-analyses on bacteria (for example,
Lozupone and Knight, 2007; Delmont et al., 2011;
Nemergut et al., 2011; Zinger et al., 2011).

Within habitats, unweighted Unifrac and
betaMNTD both showed significant distance–decay
patterns across six out of the nine habitat types
(67%) studied here. This is consistent with Hanson
et al. (2012), who found that microbial communities
showed significant spatial patterns in 68% of 54
reviewed data sets. In addition, there was substan-
tial across-habitat variation in the rate of spatial
distance–decay. As expected, the turnover rate in
phylogenetic community composition was highest
for shallow terrestrial subsurface environments (LG
and KS). This high rate of turnover in phylogenetic
community composition is consistent with a pre-
vious observation of high turnover rate in taxonomic
composition in a terrestrial subsurface environment
(Wang et al., 2008). Such high turnover rates may be
explained by strong dispersal limitation and steep
environmental gradients in subsurface environ-
ments (Wang et al., 2008).
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In amphibian, bird, mammal or plant assem-
blages, beta diversity is typically higher in mountai-
nous regions than in regions with less topo-
graphic relief, presumably due to species specializ-
ing on particular elevations (for example, McKnight
et al., 2007). Our results are consistent with this
observation: turnover rate was significantly higher
for the biofilm bacterial communities in mountain-
side streams than for other habitat types (except
subsurface environments). This high elevational
turnover rate of bacteria is also consistent with the
results for diatoms and macroinvertebrates in the
same streams (Wang et al., 2012b). On the other
hand, high turnover across elevations for bacteria is
somewhat different from a previous result obtained
using denaturing gradient gel electrophoresis along
the same elevational gradient, which showed no
significant elevational distance–decay relationship
(Wang et al., 2012b). This difference may have
resulted from different resolution of the two meth-
ods: a method with lower resolution may fail to
detect a significant distance–decay relationship
because of undetected endemism (Morlon et al.,
2008; Hanson et al., 2012).

Our samples covered a wide range of horizontal
spatial extents, which potentially affects the
observed turnover rate. Below the spatial extent of
10 km, we did not find significant distance–decay in
KL1, KL7 or HX sample groups. At a spatial extent
ofo100 km, as within habitats of Taihu Lake (ThS
and ThW) for instance, we found significant
differences in turnover rates across-habitat types:
bacterial communities in surface sediments showed
a significantly higher turnover rate than their
corresponding free-living communities (1.4 and 1.0
unweighted Unifrac per 103 km, respectively). When
larger spatial extents were considered (4 100 km),
the lakes from mountain regions (SC) for instance,
the sediment bacterial communities showed a
significantly lower turnover rate than other habitats,
especially within habitats (that is, ThS) (Figure 3).

Previous work has also found the distance–decay
relationship for microbes to be scale dependent,
where significant relationships occurred only across
local or relatively short spatial extents (for example,
King et al., 2010; Martiny et al., 2011). However, for
larger spatial extents similar to those we considered
here, former reports indicate that the bacterial
distance–decay relationships range from significant
in lake surface sediments across the Tibetan Plateau
(Xiong et al., 2012) to nonsignificant in North
America soils (Fierer and Jackson, 2006). These
results collectively suggest that the rate of distance–
decay in bacteria shows strong context-dependency,
potentially driven by among-habitat variation in the
degree of environmental spatial autocorrelation and
in the degree of dispersal limitation.

Summarily, the pairwise phylobetadiversity sig-
nificantly increased with spatial distance for most of
the sample groups and clearly showed that among
the studied habitats there were significant

differences in the rates at which community com-
position changes through space. In general, the
horizontal turnover rates of bacterial communities
from lakes or soils, or from local or regional scales,
were significantly lower than the rates from subsur-
face environments or mountain regions. In addition,
the community turnover rate in subsurface environ-
ments was highest.

Deterministic processes govern community
composition across habitats
By leveraging phylogenetic information and follow-
ing the three-step procedure proposed here, we
inferred the relative influences of deterministic and
stochastic processes across a broad range of habitat
types. The first step is to examine distributions of
ses.betaMNTD; a distribution mean that deviates
significantly from zero suggests a strong influence of
deterministic processes (Fine and Kembel, 2011;
Stegen et al., 2012). In 9 of the 11 sample groups,
ses.betaMNTD distributions deviated significantly
from zero (Supplementary Figure S3). Furthermore,
seven groups showed distributions greater than zero
(Supplementary Figure S3), suggesting that across
communities there are shifts in environmental
conditions that deterministically cause changes in
community composition. Two groups from Taihu
Lake (ThS and ThW) had mean ses.betaMNTD
values that were less than zero (Supplementary
Figure S3), suggesting that for both groups there was
relative consistency in the environmental condi-
tions that deterministically governed community
composition. Although many features of the
observed abiotic environment in Taihu Lake varied
across sampled communities, a high level of
eutrophication was maintained across communities
(Duan et al., 2009). It may therefore be that high
eutrophication imposed strong environmental filter-
ing on microbial communities in Taihu Lake. More
generally, our observation of ses.betaMNTD values
ranging from negative to null to positive highlights
the fact that the influence of deterministic ecological
processes varies across systems; deterministic pro-
cesses can minimize spatial variation in, have little
influence over, or drive large shifts in community
composition. A major challenge for future work is to
mechanistically understand variation in the influ-
ence of deterministic processes.

The second step in the process-inference proce-
dure focuses on revealing which process is the
primary cause of significant, partial Mantel coeffi-
cients relating turnover in community composition
to spatial distance. A common interpretation is that
such a relationship is caused by stochastic pro-
cesses. Although intuitive, this interpretation may
be premature, especially if turnover in community
composition is quantified using a observed or ‘raw’
metric; a raw metric such as betaMNTD simply
measures the difference in composition between
two communities.
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Consider a scenario in which the turnover in
community composition is quantified using
betaMNTD and in which there is an unmeasured
environmental variable that changes across sampled
microbial communities. If this unmeasured variable
governs community composition, it can cause a
significant partial Mantel coefficient relating
betaMNTD to spatial distances. The standard (and
incorrect) inference would be that community
composition is governed by stochastic processes.

To make a more robust inference we use ses.
betaMNTD as the turnover metric. In this case, the
partial Mantel coefficient related to spatial distance
should reflect deterministic processes governed by
unmeasured environmental variables. The reason is
twofold: (i) the influence of measured environmen-
tal variables has already been accounted for because
we are dealing with partial Mantel coefficients; and
(ii) the magnitude of phylogenetic null model
departures (that is, ses.betaMNTD) should only be
influenced by deterministic processes; stochastic
processes should have no influence (Hardy, 2008).

When using ses.betaMNTD as the turnover metric,
a significant, partial Mantel coefficient related to
spatial distances should indicate that stochastic
processes are overwhelmed by deterministic pro-
cesses governed by unmeasured environmental
variables. Similarly, if the partial Mantel coefficient
is nonsignificant, it would indicate that unmeasured
environmental variables have little influence over
community composition.

In ThS, KS and STR groups, spatial distances
were significantly related to ses.betaMNTD after
controlling for measured environmental distances
(Table 2). We therefore infer that in these habitats
there are unmeasured, spatially structured environ-
mental variables that influence community compo-
sition by imposing deterministic processes. We also
infer that deterministic processes imposed by
unmeasured variables overwhelm any influences
of stochastic processes. In contrast, for the other six
groups, unmeasured environmental variables have
little influence. For these six groups, a significant
influence of stochastic processes can be indicated by
a significant relationship between spatial distance
and Unifrac or betaMNTD (after controlling for
measured environmental variables).

The third step in our process-inference procedure
evaluates the relative balance between deterministic
and stochastic processes. To begin, we infer a greater
influence of deterministic processes for the three
groups characterized by significant influences of
measured and unmeasured environmental variables
(ThS, KS and STR). This inference assumes that if
stochastic processes were more influential than
deterministic processes, spatial distances alone would
not be related to ses.betaMNTD; stochastic processes
acting alone should cause there to be no relationship
between ses.betaMNTD and spatial distance.

For the six sample groups in which ses.betaMNTD
was not related to spatial distances (by partial

Mantel), we use the relative magnitudes of partial
Mantel coefficients from the analyses of Unifrac and
betaMNTD. The reason we use these observed or
‘raw’ beta diversity metrics instead of ses.betaMNTD
is because they can increase with an increased
influence of stochastic processes. That is, increased
stochasticity should increase taxonomic turnover
and increased taxonomic turnover should, by itself,
cause increases in phylogenetic turnover. For five of
the six sample groups, the partial Mantel coefficient
was larger for environmental distance than for
spatial distance (Supplementary Tables S1 and S2).
We take this as evidence that deterministic pro-
cesses are more influential than stochastic processes
in these five groups. The exception was the HX
group, which was characterized by nonsignificant
partial Mantel tests, which does not provide any
clear ecological inferences.

It is worth noting that some inferences drawn here
are opposite to those which we would have made
using ‘traditional’ approaches without null models.
When a higher partial Mantel coefficient is observed
for spatial distance than for environmental distance,
the standard inference is that stochastic processes
have a stronger influence than deterministic pro-
cesses. Using this approach (for example, for KS and
STR), partial Mantel coefficients based on
betaMNTD would suggest a stronger influence of
stochastic processes (Supplementary Table S2).

Considering that ses.betaMNTD is significantly
related to spatial distance in KS and STR, however,
implies that the larger coefficient on spatial distance
is actually driven by unmeasured environmental
variables that deterministically govern community
composition. This reverses the inference from the
dominance of stochastic processes to the dominance
of deterministic processes. We suggest that the
approach used here provides more informed infer-
ences than the standard Mantel framework. It would
be informative to apply the approach to the
previously studied microbial and macro-organism
systems. Substantial changes in our new under-
standing of these systems may result. We stress,
however, that both approaches are important and
the relative utility of each will depend on the
context and questions of interest.

Concluding remarks

Although our results suggest that bacterial commu-
nities are governed primarily by deterministic
processes, stochastic processes are also important.
For instance, many pairwise comparisons produced
nonsignificant ses.betaMNTD values and the ses.be-
taMNTD distributions for the Kuilei Lake were not
significantly different from zero (Supplementary
Figure S3). In addition, bacterial communities in
surface sediments near river mouths (islands or
waterway channels) were more phylogenetically
similar to the lake water than the other locations
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in Taihu Lake, with an increasing trend in dissim-
ilarities from the river mouth to the lake center
(Supplementary Figure S1). This pattern suggests a
stronger influence of dispersal and mass effects near
the river mouth, potentially due to physical mixing.
These observations emphasize the need to under-
stand what governs the relative balance between
stochastic and deterministic processes and what
conditions would lead to stochastic processes over-
whelming deterministic processes.

By integrating former theoretical reviews (Leibold
et al., 2004; Martiny et al., 2006), Lindström and
Langenheder (2012) depicted the relationship
between stochastic and deterministic processes
along gradients of dispersal rate and selective
strength imposed by local habitat conditions
(Figure 4). Our results across a broad range of
ecosystems suggest that the dominance of stochastic
processes might occur only when the selective
strength of local habitat conditions is below a
conceptual threshold (Figure 4). Microbial commu-
nities are above this threshold when they are
considered across-habitat types or across space
within highly environmentally heterogeneous

habitats. This is likely driven by habitat specializa-
tion, reflected here by significant phylogenetic
signal in environmental associations across short
phylogenetic distances. In systems with less envir-
onmental variation or with regional species pools
characterized by environmental generalists, stochas-
tic processes may overwhelm deterministic pro-
cesses, as suggested in previous work (for example,
Ofiteru et al., 2010).
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