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Material and methods

For subsurface sediment (below 1 cm) from Kusai Lake in Qinghai-Tibetan plateau (KS) and Lugu Lake in Yunnan Province (LG) and subsurface soil (below 5 cm) from a park in Nanjing City (NJ), sediment/soil cores were collected with sterilized polyvinyl chloride tubes using platform drilling rig or hydraulic pressure-driven coring device and contamination-free samples along the depth were subsampled using sterile cut-off syringes Wang et al 2008()
. The total depths for these three sediment cores were 7.5, 11.7 and 25.5 m, respectively. For stream biofilm bacteria from Laojun Mountain in Yunnan Province (STR), we scraped off the stream benthic stones for subsamples from predefined areas using sterilized sponges 
 ADDIN EN.CITE 
(Wang et al 2011, Wang et al 2012)
. For free-living bacteria from Taihu Lake in Jiangsu Province (ThW), we sampled water from the surface layer (top 50 cm) and collected the bacteria using 0.2-μm pore size Isopore filters after being prefiltered with 5-μm pore size Isopore filters. For surface sediment samples from Kuilei Lake (KL1 and KL7 sampled in January and July, respectively) and Taihu Lake in Jiangsu Province (ThS), and the lakes in Sichuan Province (SC), three short sediment cores (< 50 cm) for each site were retrieved using Kajak-Brinkhurst sampler and the three 1-cm surface sediment subsamples were pooled. For surface soil samples from Zhejiang Province (ZJ) or Hoh Xil in Qinghai-Tibetan plateau (HX), we sampled three top 4-cm soil subsamples for each site which were subsequently pooled. For the sample groups ThS, ThW, KS, LG, NJ, STR, and HX, we obtained the samples along transects. To compare the bacteria communities in lake water and sediments, we simultaneously examined the bacteria communities in lake water (ThW) and sediment (ThS) from Taihu Lake in the same locations during the same cruise. In these lakes, Kusai Lake is a saline lake with a salinity of ~17‰ and the others were freshwater lakes, and the two surface sediments from Kusai Lake were grouped as KSS. All these samples were transported to the laboratory under -18 oC and then kept in -80 oC for subsequent genetic analyses.
Details in DNA sequencing and analyses can be found in Wang et al 2012()
. Briefly, genomic DNA was extracted from freeze-dried samples (soil, sediment and biofilm) or filters using phenol chloroform method. Bacterial 16S rRNA genes were amplified using the 27F primer with the 454 Life Sciences ‘A’ sequencing adapter, and the 519R primer with an 8-bp barcode sequence and the 454 Life Sciences “B” sequencing adapter. The PCR amplifications were performed for three replicates per sample, and then replicates were mixed. The purified, barcoded amplicons were pooled at equimolar ratios to the final concentration of 100 ng μL-1 and then sequenced using a Roche 454 FLX pyrosequencer. The sequences were deposited in MG-RAST database with sequence numbers 4508181.3 - 4508379.3 under the condition of “Data will be publicly accessible eventually”. Sequences generated from pyrosequencing of bacterial 16S rRNA gene amplicons were processed using QIIME pipeline (the Quantitative Insights into Microbial Ecology, v1.2) 
 ADDIN EN.CITE 
(Caporaso et al 2010b, Wang et al 2012)
. Briefly, the sequences were denoised with the Denoiser algorithm Reeder and Knight 2010()
, clustered into OTUs at 97% pairwise identity with the seed-based uclust algorithm Edgar 2010()
. After chimeras were removed via Chimera Slayer Haas et al 2011()
, representative sequences from each OTU were aligned to the Greengenes imputed core reference alignment DeSantis et al 2006()
 using PyNAST Caporaso et al 2010a()
. The alignments were then used to construct an approximately maximum-likelihood phylogenetic tree with Jukes-Cantor distance using FastTree Price et al 2010()
 after removing gaps and hypervariable regions using a Lane mask. Taxonomic identity of each representative sequence was determined using the RDP Classifier Wang et al 2007()
 and chloroplast or archaeal sequences were removed.
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Table S1 Mantel and partial Mantel tests for the correlation between unweighted Unifrac and the explanatory distances (elevational, geographic and environmental distance) using Spearman’s rho for different habitat types and spatial scales.
	　Unifrac
	　
	Local
	Regional

	Effects of
	Controlling for
	Surface Sediments
	Lake Water
	Subsurface Sediments
	Stream Biofilm
	Surface Sediments

	
	
	KL1
	KL7
	ThS
	ThW
	LG
	KS
	STR
	SC

	Geographic
	
	0.093
	0.112
	0.699***
	0.476***
	0.578***
	0.520***
	0.521***
	0.267***

	Environmental
	
	0.226*
	0.476*
	0.511***
	0.519***
	0.582***
	0.453***
	0.436***
	0.329*

	Elevational
	
	
	
	
	
	
	
	0.827***
	0.170

	Geographic
	Environmental
	0.037
	0.025
	0.563***
	0.215**
	0.375***
	0.458***
	0.407***
	0.175

	
	Elevational
	
	
	
	
	
	
	-0.248***
	0.242*

	Elevational
	Environmental
	
	
	
	
	
	
	0.781***
	0.089

	
	Geographic
	
	
	
	
	
	
	0.769***
	0.125*

	Environmental
	Geographic
	0.210
	0.466*
	0.115
	0.315***
	0.382**
	0.373**
	0.268***
	0.263

	　
	Elevational
	　
	　
	　
	　
	　
	　
	-0.065***
	0.298*


The significances are tested based on 10,000 permutations. *** P < 0.001; ** P < 0.01; * P < 0.05. For the HX group, both the geographic and environmental distances were not significantly related to bacterial phylogenetic turnover (P > 0.05). For ZJ and NJ groups, the Mantel analyses are not conducted due to their lower sample numbers (7 and 5, respectively).
Table S2 Mantel and partial Mantel tests for the correlation between betaMNTD and the explanatory distances (elevational, geographic and environmental distance) using Spearman’s rho for different habitat types and spatial scales.
	BetaMNTD
	　
	Local
	Regional

	Effects of
	Controlling for
	Surface Sediments
	Lake Water
	Subsurface Sediments
	Stream Biofilm
	Surface Sediments

	
	
	KL1
	KL7
	ThS
	ThW
	LG
	KS
	STR
	SC

	Geographic
	
	0.099
	0.202
	0.435***
	0.275**
	0.422***
	0.486***
	0.494***
	0.143 

	Environmental
	
	0.296*
	0.404*
	0.497***
	0.485***
	0.571***
	0.422**
	0.447***
	0.377**

	Elevational
	
	
	
	
	
	
	
	0.827***
	0.129 

	Geographic
	Environmental
	0.032
	0.140
	0.226**
	0.056
	0.152
	0.422***
	0.372**
	0.030 

	
	Elevational
	
	
	
	
	
	
	-0.367**
	0.127**

	Elevational
	Environmental
	
	
	
	
	
	
	0.779**
	0.030 

	
	Geographic
	
	
	
	
	
	
	0.799**
	0.110**

	Environmental
	Geographic
	0.282*
	0.380*
	0.344**
	0.419***
	0.446***
	0.338**
	0.296**
	0.354*

	　
	Elevational
	　
	　
	　
	　
	　
	　
	-0.043**
	0.358**


The significances are tested based on 10,000 permutations. *** P < 0.001; ** P < 0.01; * P < 0.05. For the HX group, both the geographic and environmental distances were not significantly related to bacterial phylogenetic turnover (P > 0.05). For ZJ and NJ groups, the Mantel analyses are not conducted due to their lower sample numbers (7 and 5, respectively).
Figure S1 The dissimilarity among bacterial communities between different habitat types. (A) The dissimilarity between the communities of the surface sediments and lake water in Taihu Lake. The box-plots show the unweighted Unifrac or betaMNTD dissimilarity between each surface sediment and the all 27 lake water (between ThS01 and ThW01-ThW27, for instance). The communities differed greatly between surface sediment and lake water for both Unifrac and betaMNTD metrics, with average values of 0.94 ± 0.01 and 0.44 ± 0.02, respectively. Sites 01 and 18 are near river mouths, site 10 is ~1 km away from a man-made island, and site 6 and 14 are ~ 1 km away from the waterway channels (solid square). The arrows from site 1 to site 5 and from site 18 to 15 indicate that the distances between these sites to the correspongding river mounth are increasing. The communities of the surface sediments near river mouths (islands or waterway channels) were more similar to the lake water than the other locations in Taihu Lake, with an increasing trend in dissimilarities from the river mouth to the lake center. (B) The unweighted Unifrac or betaMNTD dissimilarity between the each surface (KS01 and KS02 from sample group KSS) or subsurface (KS03-KS30 from sample group KS) sediments from Kusai Lake and all of the soils (HX) from Kusai Lake region. Communities differed notably between soils and lake sediments for Unifrac and betaMNTD metrics, with average values of 0.95 ± 0.01 and 0.49 ± 0.05, respectively.
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Figure S2 The relationships between betaMNTD and spatial change for each sample group. The regression slopes of the linear relationships based on Gaussian generalized model are shown with solid or dashed (statistically non-significant, ranked Mantel test, 9999 permutations, P > 0.05) lines. The significant slope (unweighted betaMNTD per 103 km) is shown at the bottom-right corner of each sample group panel.
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Figure S3 Barplot of the proportions of significant ses.betaMNTD compared to the random phylogenetic turnover (P < 0.05). Ses.betaMNTD values < -2 indicate less than expected turnover; values > +2 indicate greater than expected turnover. The mean values of betaMNTD were shown below the labels of the corresponding sample groups and were significantly different from expected value of zero for random data (P < 0.001, t-test), except sample group KL1 and KL7 (P > 0.05).
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Figure S4 The relationships between the standardized effect size of betaMNTD (ses.betaMNTD) and spatial change for each sample group. The regression slopes of the linear relationships based on Gaussian generalized model are shown with solid or dashed (statistically non-significant, Mantel test, 9999 permutations, P > 0.05) lines. The dotted red line (>+2 or <-2) shows the 95% confidence intervals around the expectation under a null model of random shuffling of taxa across the tips of the phylogenetic tree including all species in the studied sample group.
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Figure S5 Median habitat differences between pairs of OTUs as a function of between OTU phylogenetic distances, following the methods of Stegen et al 2012()
. Habitat difference was calculated as the abundance-weighted mean of all the environmental variables of a given OTU and medians were taken within phylogenetic distance bins. Curves were fitted with locally-weighted polynomial regression. Across short phylogenetic distances, strong positive relationships between phylogenetic distance and OTU niche differences were observed, indicating significant phylogenetic signal.
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