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1  | INTRODUC TION

Biodiversity gradient on mountainsides is one of the most histori‐
cal and frequently documented biogeographical patterns (Lomolino, 
2001; Rahbek, 2005). Elevational gradients provide a “natural labo‐
ratory” in which climatic conditions vary within a short geographical 

distance, allowing the investigation of underlying multiscale hier‐
archical determinants of biodiversity. Over the past two centuries, 
numerous studies have focused on elevational diversity patterns of 
macroorganisms and identified some general patterns and potential 
underlying drivers shaping these patterns (Rahbek, 2005). During re‐
cent decades, elevational diversity patterns of microorganisms have 
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Abstract
Microbial biogeography is gaining increasing attention due to recent molecular meth‐
odological advance. However, the diversity patterns and their environmental deter‐
minants across taxonomic scales are still poorly studied. By sampling along an 
extensive elevational gradient in subarctic ponds of Finland and Norway, we exam‐
ined the diversity patterns of aquatic bacteria and fungi from whole community to 
individual taxa across taxonomic coverage and taxonomic resolutions. We further 
quantified cross‐phylum congruence in multiple biodiversity metrics and evaluated 
the relative importance of climate, catchment and local pond variables as the hierar‐
chical drivers of biodiversity across taxonomic scales. Bacterial community showed 
significantly decreasing elevational patterns in species richness and evenness, and 
U‐shaped patterns in local contribution to beta diversity (LCBD). Conversely, no sig‐
nificant species richness and evenness patterns were found for fungal community. 
Elevational patterns in species richness and LCBD, but not in evenness, were congru‐
ent across bacterial phyla. When narrowing down the taxonomic scope towards 
higher resolutions, bacterial diversity showed weaker and more complex elevational 
patterns. Taxonomic downscaling also indicated a notable change in the relative im‐
portance of biodiversity determinants with stronger local environmental filtering, 
but decreased importance of climatic variables. This suggested that niche conserva‐
tism of temperature preference was phylogenetically deeper than that of water 
chemistry variables. Our results provide novel perspectives for microbial biogeogra‐
phy and highlight the importance of taxonomic scale dependency and hierarchical 
drivers when modelling biodiversity and species distribution responses to future cli‐
matic scenarios.
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also received increasing attention (Bryant et al., 2008; Peay et al., 
2017; Shen et al., 2013; Wang et al., 2011, 2017). Nonetheless, the 
general patterns and driving mechanisms of microorganisms along 
elevational gradients remain poorly understood.

Microorganisms constitute the most abundant and diverse (ca. 
1011–1012 species) group of life on Earth (Locey & Lennon, 2016) and 
encompass a broad range of phylogenetic clades (Yarza et al., 2014). 
The history of microbial evolution is probably as old as the history 
of life itself, and the phylogenetic and physiological diversity of mi‐
crobial phyla, especially in bacteria, is considerably greater than that 
among animal and plant phyla (Giovannoni & Stingl, 2005; Prosser 
et al., 2007). The long evolutionary history of microbes created not 
only enormous phylogenetic, but also physiological diversity (Yarza 
et al., 2014). Although microbes are extremely diverse within each 
phylum and seem to be nearly ubiquitously distributed at the phy‐
lum level across habitats, previous studies suggest each member 
of the same phylum might share general ecological strategies and 
traits (Martiny, Jones, Lennon, & Martiny, 2015). For instance, Fierer, 
Bradford, and Jackson (2007) suggested that certain soil bacterial 
phyla could be differentiated into r‐ and k‐ecological categories. In 
the case of aquatic bacteria, there are many distinct biogeographical 
patterns within phyla in freshwater lakes (e.g., Newton, Jones, Eiler, 
McMahon, & Bertilsson, 2011), and spatial or temporal separation 
of phyla and other higher taxonomic ranks across freshwater lakes 
and many other environments. The idea that such biogeographi‐
cal patterns may reflect ecological coherence at higher taxonomic 
resolution levels is also partly supported (Abarenkov et al., 2010; 
Lennon, Aanderud, Lehmkuhl, & Schoolmaster, 2012; Lindström & 
Langenheder, 2012; Lu et al., 2016; Philippot et al., 2009).

As certain ecological processes may only be evident at particu‐
lar taxonomic scale, exploring the taxonomic scale dependency of 
ecological patterns could provide a comprehensive understanding 
of diversity patterns (Levin, 1992). The taxonomic scale comprises 
two important aspects: taxonomic resolution (grain) and taxonomic 
coverage (extent) (Graham, Storch, & Machac, 2018). Since different 
ecological traits may have different phylogenetic depth, particular 
ecological trait may be conserved or evident only when examined 
at certain levels of taxonomic resolution (e.g., at species or genus 
levels) or among specific taxonomic group (Martiny et al., 2015). In 
addition, as individual taxa may have specific biotic or abiotic traits 
along large environmental gradient, changing the taxonomic scope 
from high to low taxonomic coverage could also affect the poten‐
tial drivers of biodiversity (Peters et al., 2016). Therefore, incorpo‐
rating these two perspectives into a theoretical framework might 
allow more predictive microbial ecology to emerge (e.g., Hurlbert 
& Stegen, 2014). However, a severe drawback of published stud‐
ies on microbial elevational biodiversity is that communities have 
typically been examined only at a single taxonomic scale (e.g., few 
phylogenetic groups from the same taxonomic resolution level or 
the whole microbial community). Thus, the question of how diver‐
sity patterns could vary with taxonomic coverage and resolution 
has not been properly addressed in the literature, although such 
a study might reveal deep insights into biodiversity patterns and 

underlying environmental drivers. For instance, how does the rel‐
ative importance of environmental determinants for biodiversity 
patterns change across taxonomic scales?

Biodiversity comprises multiple components such as species 
richness, species abundance distribution (which is often measured 
as evenness) and beta diversity (Legendre & De Cáceres, 2013; 
Magurran, 2013). Species richness measures the total species num‐
ber at sites, whereas evenness measures how similar the species 
are in their abundances (Magurran, 2013), being both important 
facets that describe the biodiversity of local communities. Both 
of these diversity metrics were found to link with multiple ecosys‐
tem processes and ecosystem functioning (Wilsey & Potvin, 2000; 
Wittebolle et al., 2009). According to a meta-analysis (Soininen, 
Passy, & Hillebrand, 2012), species richness and evenness often re‐
flect independent components of biodiversity, and therefore, they 
can potentially provide different insights into elevational diversity 
patterns (Wang et al., 2017). In addition, beta diversity has long 
been recognized as an important biodiversity facet to understand 
how diversity varies in space and time and how it could be main‐
tained (Harte, McCarthy, Taylor, Kinzig, & Fischer, 1999; Jaccard, 
1912; Mena & Vázquez-Domínguez, 2005). Interestingly, the rela‐
tive contributions of sampling sites to beta diversity can also be es‐
timated by a recently introduced metric of local contribution to beta 
diversity (LCBD; Legendre & De Cáceres, 2013). Considering multi‐
ple aspects of biodiversity simultaneously may help to improve our 
understanding of the general biodiversity patterns and underlying 
mechanisms.

A comprehensive understanding of biodiversity also requires 
the investigation of environmental determinants at multiple, 
often hierarchical, spatial scales (Cavender-Bares, Kozak, Fine, & 
Kembel, 2009; Levin, 1992; Swenson, Enquist, Pither, Thompson, & 
Zimmerman, 2006). The hierarchical factors that affect microbial di‐
versity in freshwaters comprise the following: (a) local‐scale abiotic 
factors including pH, nutrients and conductivity, along with biotic 

Highlights

• Elevational patterns in species richness and local contri‐
bution to beta diversity, but not in evenness, are congru‐
ent across bacterial phyla.

• Taxonomic downscaling significantly changes the eleva‐
tional patterns of microbes, indicated by weaker and 
more complex diversity–elevation relationships.

• Bacterial diversity at lower taxonomic resolution levels 
is predicted well by climatic variables, while those at 
higher taxonomic resolution levels are more relevant to 
local environmental filtering.

• Niche conservatism of temperature preference is phylo‐
genetically deeper than that of water chemistry 
variables.



88  |     YEH Et al.

factors of competition, facilitation and grazing; (b) intermediate-
scale variables, that is, catchment variables that include terrestrial 
productivity, bedrock and soil type; and (c) the drivers that oper‐
ate on large scales such as climate, dispersal and historical factors 
(Frissell, Liss, Warren, & Hurley, 1986). Some studies suggest that 
freshwater microbial diversity is determined mostly by local‐scale 
environmental factors such as pH and nutrient concentration (Van 
der Gucht et al., 2007; Wang et al., 2017), whereas other studies 
suggest large‐scale climatic or catchment properties are also essen‐
tial (Teittinen, Wang, Strömgård, & Soininen, 2017). However, how 
the relative importance of these hierarchical environmental factors 
in shaping biodiversity may vary with taxonomic scales remains 
understudied.

In this study, we examined elevational biodiversity patterns and 
their hierarchical drivers for freshwater biofilm microorganisms 
across taxonomic scales. We considered two aspects of taxonomic 
scales, that is, taxonomic coverage and taxonomic resolution. With a 
large number of bacteria and fungi samples collected from the sub‐
arctic ponds of northern Finland and Norway, we focused on three 
specific aims. First, we explored the elevational patterns across 22 
microbial phyla and quantified cross‐phyla congruence in species 
richness, evenness and LCBD of bacteria and fungi. Second, we in‐
vestigated how taxonomic coverage (i.e., the shift from the whole 
community to individual phylum levels) affected the elevational 
patterns in biodiversity and the relative importance of hierarchical 
drivers of local, catchment and climatic factors. Third, we further ex‐
plored how downscaling to higher taxonomic resolution levels (i.e., 
the shift from domain to genus) affected the elevational patterns in 
biodiversity and the relative importance of hierarchical drivers act‐
ing on various taxonomic resolution levels.

2  | MATERIAL S AND METHODS

2.1 | Field sampling

The detailed sampling scheme and physicochemical/biological 
analyses were described in Teittinen et al. (2017). Briefly, we sam‐
pled 102 ponds in the Kilpisjärvi–Skibotn region and 44 ponds in 
the Rásttigáisá region in July and August 2015. The study area 
(68°55′ to 69°58′N, 20°02′ to 26°25′E) is located in northern 
Fennoscandia and covers parts of Finland and Norway. The re‐
gional climate is characterized by long, cold winters and short, 
relatively warm, ice‐free and light‐abundant summers. The annual 
mean temperature varies from −1.9°C in Kilpisjärvi (Finland) to 
−0.5°C in Skibotn (Norway). Our sampling covered long climatic 
and environmental gradients; thus, the sampled ponds were dis‐
tributed altitudinally across the treeline along an elevational 
gradient of 10–1,038 m a.s.l. The catchments near sea level are 
characterized by mixed forests or peatlands, with a transition to a 
zone that is dominated by mountain birch, and to treeless tundra 
and barren, rocky catchments with increasing elevation. The ma‐
jority of the ponds are pristine or close‐to‐pristine with negligible 
anthropogenic activity in their catchments.

2.2 | Climate, buffer zone and local variables

Climate variables for each study pond, that is, mean July tempera‐
ture (MJT), mean annual temperature, mean July precipitation and 
mean annual precipitation (MAP), were extracted from WorldClim 
global climate data (ca. 1 km2 spatial resolution), representative of 
1950–2000 (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) using 
arcgis (version 10.2.1; ESRI, Redlands, CA, USA). We note that the 
interpolated climate data may not be truly optimal for relatively small 
spatial scales considered here and finer climate data might be better 
for statistical modelling in spatial biodiversity. The used data set is, 
however, the best climatic data set currently available for the two 
regions studied, where there is no locally measured climatic data ac‐
cessible for this large number of ponds.

Normalized Difference Vegetation Index (NDVI) was used as a 
catchment-scale variable (i.e., buffer zone variable) to indicate ter‐
restrial productivity. Detailed measurement and calculation meth‐
ods for NDVI are documented previously (Teittinen et al., 2017).

Water temperature, specific conductivity (SPC) and pH were 
measured in situ. Water samples were collected and analysed later 
in the laboratory for total nitrogen (TN) according to standard SFS‐
EN ISO 11905‐1, and for Si, Ca, Mg and K concentrations accord‐
ing to standard SFS‐EN ISO 11885. The pond areas were measured 
through digital maps of Finland and Norway.

2.3 | Bacterial and fungal communities

Bacterial analyses were performed according to previously pub‐
lished descriptions (Wang et al., 2017). Briefly, bacterial 16S 
rRNA genes were amplified in triplicate using bacterial universal 
primers [515F, 5′-GTGCCAGCMGCCGCGGTAA-3′ and 806R, 5′-
GGACTACHVGGGTWTCTAAT-3′]. Negative controls in PCR were 
done to ensure valid amplicons. PCR products of triplicate reac‐
tions were combined and quantified using PicoGreen (Eugene, OR, 
USA). PCR products from samples to be sequenced in the same 
MiSeq run were pooled at equal molality to maximize the even-se‐
quencing effects for all samples. Sample libraries for sequencing 
were prepared according to the MiSeq Reagent Kit Preparation 
Guide (Illumina, San Diego, CA, USA). Overlapped paired-end 
sequences from MiSeq were assembled using flash (Magoč & 
Salzberg, 2011). Poorly overlapped and poor-quality sequences 
(such as sequence length <150 and moving‐window (5 bp) quality 
score <29) were filtered out before demultiplexing based on bar‐
codes. Further, the sequences were clustered into OTUs at 97% 
pairwise identity with the seed‐based UCLUST algorithm (Edgar, 
2010). Representative sequences from each OTU were aligned 
to the Greengenes imputed core reference alignment V.201308 
(DeSantis et al., 2006). This took place after chimeras were re‐
moved via UCHIME against ChimeraSlayer reference database in 
the Broad Microbiome Utilities using PyNAST (Caporaso et al., 
2010). Identity of each representative sequence was determined 
using the RDP classifier (Wang, Garrity, Tiedje, & Cole, 2007), and 
chloroplast and archaeal sequences were removed.
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For the identification of fungal communities, an ampli‐
con of ITS2 region was targeted using the primers: gITS7F, 5′-
GTGARTCATCGARTCTTTG-3′ and ITS4R, 5′-TCCTCCGCTTA 
TTGATATGC-3′. PCR products were pooled at equal molality and se‐
quenced in the same MiSeq run. Chimeric sequences were removed 
using de novo chimera detection with USEARCH (Edgar, 2010). ITS2 
region was extracted using Fungal ITS Extractor (Nilsson, Bok, Ryberg, 
Kristiansson, & Hallenberg, 2009), as the conserved flanking regions 
are known to distort similarity searches, taxonomic assignments and 
clustering results (Bruns & Shefferson, 2004). The resulting ITS2 reads 
were clustered to OTUs based on the UCLUST algorithm (Edgar, 2010), 
with 97% similarity threshold to reference sequences in the unite da‐
tabase (Abarenkov et al., 2010), and the OTUs were further identified 
taxonomically using the RDP classifier (Wang et al., 2007) against the 
unite database (Abarenkov et al., 2010). To ensure that the empirical 
biodiversity was not biased or confounded by variation in abundance 
or sampling intensity, the bacterial and fungal sequences were rarefied 
at 8,000 and 1,000 sequences, respectively. Thus, all the diversity 
measured in following context described relative instead of absolute 
diversity.

2.4 | Statistical analyses

The MJT, mean annual temperature and mean July precipita‐
tion were highly correlated (rs > 0.9); thus, we used MJT to 
represent the growing season temperature. We used MAP as 
the long‐term measurement for precipitation, which was log10‐
transformed to reduce the skewed distributions. Local variables 
other than pH (i.e., conductivity [SPC], total nitrogen [TN], Ca, 
Mg and K) were also log10‐transformed to reduce their skewed 
distributions. Statistical dependence between the explanatory 
variables was assessed using Spearman rank correlation coef‐
ficients (rs). Mg and Ca were highly correlated with conductiv‐
ity (rs = 0.76); thus, they were excluded from further analyses. 
The maximum NDVI values for 100 and 30 m buffer zones were 
highly correlated (rs > 0.9). Due to short distances between 

some of the ponds, we chose to use the maximum NDVI values 
calculated using 30 m buffer radius (hereafter NDVI) in forth‐
coming analyses. All the other pairwise Spearman rank correla‐
tions were less than 0.7.

We finally selected 22 microbial phyla, including 18 bacterial 
phyla and four fungal phyla that were present in more than 60% 
of the samples (Table  1). The phylum that had the highest number 
of OTUs across pond biofilm samples was Alphaproteobacteria, 
followed in descending order by Bacteroidetes, Planctomycetes, 
Deltaproteobacteria, Cyanobacteria and Chloroflexi, all of which 
comprised ~55% of the observed OTUs (Table  1). Notably, in 
the analysis of taxonomic coverage, we divided Proteobacteria 
phylum into different classes because of the high diversity of 
Proteobacteria and different ecological functions of these classes.

We estimated OTU richness, evenness and LCBD for all the 
phyla. Although the decomposition of diversity into truly inde‐
pendent richness and evenness components is mathematically 
impossible (Jost, 2010), richness and evenness represent clearly 
differentiated aspects of biodiversity (Magurran, 2013). We used 
Pielou’s evenness (Pielou, 1966) as this is a widely used good mea‐
sure of distribution of relative abundance in a community (Jost, 
2010).

Local contribution to beta diversity enabled the identification 
of sites that contribute more or less than average to overall beta 
diversity (Legendre & De Cáceres, 2013). A high LCBD value at 
a site indicates that the site harbours a unique community com‐
position in the data set and thus comprises many regionally rare 
species. We computed the LCBD values by using Hellinger‐trans‐
formed abundance data and the function beta.div in the r code 
provided by Legendre and De Cáceres (2013). To avoid misleading 
values, the samples in which the analysed taxa had OTUs number 
<3 for evenness and <1 for LCBD were omitted. We used a gen‐
eralized additive model (GAM) to derive the relationship between 
the different diversity metrics and elevation using the Gaussian‐
type data family and set the smoothing function to five as dimen‐
sionality of the basis expansion (Wood, 2017).

Phyla Abbrev. OTU Phyla Abbrev. OTU

Acidobacteria ACI 1068 Gemmatimonadetes GEM 171

Actinobacteria ACT 1043 Gammaproteobacteria GPB 1182

Alphaproteobacteria APB 3078 Nitrospirae NIT 113

Armatimonadetes ARM 323 Planctomycetes PLA 1567

Bacteroidetes BAC 1567 TM7 TM7 89

Betaproteobacteria BPB 898 Verrucomicrobia VER 536

Chlorobi CHB 93 WPS‐2 WPS 86

Chloroflexi CHL 1306 Ascomycota ASC 990

Cyanobacteria CYA 1308 Basidiomycota BAS 240

Deltaproteobacteria DPB 1318 Chytridiomycota CHY 150

Firmicutes FIR 524 Zygomycota ZYG 35

Note. We only kept the phyla with the occurrences larger than 60% of all samples. OTU represents 
the numbers of all OTUs or species presented across all sites for each phylum.

TA B L E  1   Abbreviations for the 
detected phyla
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An approximate significance of smoothing terms was used to test 
the significance of the fitted trend lines (Wood, 2012). Notably, con‐
sidering the large sample size collected and the use of robust statis‐
tical regression methods, a valid interpretation of elevational pattern 
could be achieved even without replicate samples (Lennon, 2011). 
We used the r package mgcv (version 1.8-23) for GAM analysis.

We examined the congruence in biodiversity across phyla and 
the associations between different phyla and environmental vari‐
ables using pairwise Spearman rank correlations. We included 22 
phyla, elevation and eight different climatic, catchment and local 
variables (i.e., MJT, MAP, NDVI, TN, K, SPC, pH and area). To visu‐
alize the correlations, we generated networks with both significant 
correlations (p ≤ 0.01) and moderate correlations (rs > 0.35) between 
all the 31 variables using the r package qgraph (version 1.5; Epskamp, 
Cramer, Waldorp, Schmittmann, & Borsboom, 2012).

The roles of environmental variables in driving bacterial and fun‐
gal diversity were analysed by using multimodel inference based on 
information theory and ordinary least‐square regression separately 
for each variable. We also analysed the environmental variables 
jointly at three hierarchical scales: climatic, catchment and local vari‐
ables. The multimodel approach could provide a quantitative mea‐
sure of the relative importance of each variable through ranking and 
weighting several models (Burnham, Anderson, & Huyvaert, 2011; 
Johnson & Omland, 2004). Model averaging of the best model set 
can not only account for uncertainty in model and parameter selec‐
tion, but also provide robust parameter estimates for making predic‐
tions (Burnham et al., 2011; Johnson & Omland, 2004). To compare 
the influence of different environmental variables measured at dif‐
ferent scales on diversity, all variables were z‐transformed to esti‐
mate the conditional model-averaged parameter as standardized 
beta values, that is, beta values were averaged over the models 
where the parameters appear (Anderson, 2007). The relative impor‐
tance of each variable was calculated by taking the ratios of absolute 
values of conditional model‐averaged estimates, as it is suggested to 
provide more informative measures compared with traditional use 
of sum of AIC weights (Cade, 2015). The r package mumin (version 
1.15.6) was used for multimodel averaging analyses.

To analyse the elevational patterns in bacterial biodiversity across 
taxonomic scales of coverage and resolution, and the relative impor‐
tance of explaining variables, we conducted the comparable multitaxa 
method as described in Peters et al. (2016), but with some important 
modifications. The statistical methods including the GAM model and 
the multimodel influence were similar to that described for the single 
phylum level above. First (a), we calculated species richness, evenness 
and LCBD for different taxonomic coverage of phyla (all combinations 
from 1 to 18 bacterial phyla (N = 262,143) and taxa at different taxo‐
nomic resolution levels (from domain to genus). Second (b), we mod‐
elled the species richness, evenness and LCBD as a function of elevation 
using GAMs and calculated the explained deviance and the complex‐
ity measure. Complexity was measured by comparing the explained 
deviance of generalized linear models (EDglm) against the explained 
deviance of GAMs (EDgam) of biodiversity along elevation, with the for‐
mula: complexity = (EDgam − EDglm)/EDgam (Peters et al., 2016). For 

the LCBD‐elevational relationships, which usually showed U‐shaped 
patterns across phyla and the whole communities (see results section 
for details), we further used the coefficient of determination (adjusted 
R2) of quadratic linear model to quantify the strength of U‐shaped pat‐
terns. The linear or quadratic model was selected based on lower value 
of Akaike’s information criterion (Yamaoka, Nakagawa, & Uno, 1978). 
Third (c), we ran a multimodel inference analysis with the combination 
of species richness, evenness or LCBD as the response and all environ‐
mental factors as predictor variables using the same analysis as used 
for single phylum to calculate the standardized beta values and relative 
importance of variables. Fourth (d), we quantified the relative influence 
of the environmental variables at three hierarchical scales in explaining 
biodiversity at each scale. This was done by selecting variables which 
had the highest absolute standardized beta values at local, catchment 
or climatic groups in each individual taxon across taxonomic resolution 
or coverage (i.e., all possible phylum combinations).

3  | RESULTS

3.1 | Diversity patterns across taxonomic scales

For species richness, the whole bacterial community showed significant 
(explained deviance = 22.5%, p < 0.05) monotonically decreasing pat‐
tern, but not for fungal community (Figure 1a, Supporting Information 
Figure S1). Most of the phyla exhibited significant (p < 0.05) eleva‐
tional patterns (19 out of 22 phyla, Figure 1a, Supporting Information 
Figure S1). Among these phyla, approximately 60% of bacterial and 
fungal phyla showed monotonically declining species richness with 
elevation. The other phyla showed hump‐shaped or more complex 
patterns, especially the fungal phyla. Gradually decreasing bacterial 
taxonomic coverage from the whole community (18 phyla) to single 
phyla resulted in lower explained variation (Supporting Information 
Figure S2a), with increased complexity of species richness patterns 
across elevation (Supporting Information Figure S2d).

When further examined towards higher taxonomic resolution 
levels, significant declining patterns were also evident for richness–
elevation relationships, constituting the largest proportion (ca. 40%–
50%) of individual clades from phylum to order levels. However, at 
genus level, more than half of the genera exhibited hump‐shaped 
diversity patterns (Figure 1d). The higher taxonomic resolution levels 
also showed more complex patterns with lower richness–elevation 
relationships in general (Figure 1d).

The evenness of the whole community exhibited significant lin‐
early declining pattern for bacteria, whereas no significant pattern 
was detected for fungi (Figure 1b, Supporting Information Figure 
S1). Bacterial evenness showed strong significant positive relation‐
ships (explained deviance = 65.3%, p < 0.05) with species richness 
(Supporting Information Figure S3), while the relationships were not 
consistent in phylum level. For phylum level, 13 out of 22 phyla (ca. 
60%) showed significant (p < 0.05) elevational patterns in evenness 
(Figure 1b, Supporting Information Figure S1). Among these patterns, 
approximately 40% of the phyla showed monotonically declining el‐
evational patterns, whereas the other phyla showed more complex 
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patterns, such as hump‐shaped and bimodal (Supporting Information 
Figure S1). Decreasing bacterial taxonomic coverage from whole 
community to individual phyla showed lower explained variation of 
statistical models of the relationships between evenness and eleva‐
tion (Supporting Information Figure S2b), and increased complexity 
in elevational patterns in evenness (Supporting Information Figure 
S2e). Further taxonomic downscaling greatly weakened the even‐
ness‐elevational patterns with more than half of the taxa showing 
no pattern at higher taxonomic resolution levels (Figure 1e).

For LCBD, the whole bacterial and fungal communities exhibited 
U‐shaped patterns (Figure 1c, Supporting Information Figure S1). Most 
phyla (18/22) exhibited significant (p < 0.05) elevational LCBD patterns, 
with ~80% U‐shaped and ~20% monotonically declining (Figure 1c, 
Supporting Information Figure S1). Taxonomic downscaling on coverage 

and resolution led to weaker U‐shaped relationships between LCBD 
and elevation (Figure 1f, Supporting Information Figure S2c), but the el‐
evational patterns in LCBD remained complex (Supporting Information 
Figure S2f). The adjusted R2 of quadratic linear model for the U‐shaped 
elevational patterns in LCBD decreased with bacterial taxonomic cov‐
erage (Supporting Information Figure S2g).

In network analyses for species richness (Figure 2a) and LCBD 
(Figure 2c), most bacterial phyla were strongly positively intercor‐
related, whereas the correlations among fungal phyla were weaker 
(Figure 2b). The correlations between environmental variables and 
phylum biodiversity were weaker than the interphyla correlations 
(Figure 2a,c). The correlations between the evenness of bacterial 
and fungal phyla were much weaker than for species richness or 
LCBD (Figure 2b).

F I G U R E  1   Elevational patterns in biodiversity for microbial phyla. Three diversity metrics, that is, species richness (a), evenness (b) and 
local contribution to beta diversity (LCBD, c), were considered for each bacterial or fungal phylum and their whole community. Generalized 
additive models were applied to characterize the relationships between elevation and biodiversity. The biodiversity trends of bacterial and 
fungal whole communities are presented in black solid and dotted lines, respectively, and the trends of phylum biodiversity are shown with 
coloured solid lines. Species richness and LCBD are scaled as mean = 0 and SD = 1 for better visualization. More detailed elevational patterns 
in biodiversity are shown in Supporting Information Figure S1. The phyla are ordered according to mean species number across sites. 
The abbreviations of phyla are listed in Table 1. The explained deviance, complexity and relative proportions of different patterns across 
taxonomic resolution levels from domain to genus level were presented in the lower panels of species richness (d), evenness (e) and LCBD 
(f). Different colours represent different category of patterns. These patterns were determined based on lower value of Akaike’s information 
criterion. Upper panels indicated the explained deviance of elevation–diversity relationship in GAM model and complexity of patterns across 
taxonomic resolutions. The error bars indicated the SDs of explained deviance and complexity. The taxonomic resolution levels domain, 
phylum, class, order, family and genus are shortened as D, P, C, O, F and G, respectively

Explained deviance

Phylum

Group

Bacteria

Fungi1,000 1,000 1,000

(a) (b) (c)

(d) (e) (f)
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3.2 | Underlying determinants of elevational 
biodiversity

For species richness of the whole bacterial community, temperature 
was the most important positive predictor, followed by pH and K, 
showing significantly (p < 0.05) positive and negative effects, respec‐
tively (Figure 3a). For individual bacterial phyla, temperature was also 
the most important climatic variable, with ten positive and two nega‐
tive significant effects. The catchment level, that is, NDVI, was a poor 
predictor and was the only significant factor for two phyla. Among 
the local variables, pH, followed by K, conductivity and TN, was also 
important for bacterial phyla. When considered jointly, climatic and 
local variables had dominant effects on bacterial species richness for 
50% and 50% of bacterial phyla, respectively. For fungi, pond area 
was the only variable significantly (p < 0.05) positively correlated 
with species richness for the whole community and two phyla.

For community evenness, local variables, including K and con‐
ductivity, were significant (p < 0.05) factors for the whole bacterial 
community (Figure 3b). Temperature was also important with positive 
effects for the most bacterial phyla. At the phylum level, local vari‐
ables, such as pH, TN, K and conductivity, were typically significant 
(p < 0.05) for bacteria, but their effects were inconsistent across phyla 
with both positive and negative effects. No predictor was found to 
significantly affect the evenness of the whole fungal community.

For LCBD, climatic variables were the strongest predictors with 
significant positive effects on both the whole community and in‐
dividual phyla (Figure 3c). NDVI and pH were also important with 
negative effects on the whole community and most phyla. Among 
the three variable groups, climate had the most dominant effect on 
LCBD with 67% of the phyla explained best by climatic variables.

Based on the mean standardized estimates of individual envi‐
ronmental variables (Figure 4a, Supporting Information Figure S4), 
the mean (Figure 4d) and proportion (Supporting Information Figure 

S5) of the highest standardized estimates of environmental variable 
groups, the joint effects of climatic variables for species richness de‐
creased while decreasing the taxonomic coverage from the whole 
bacterial community to phylum level, whereas the relative impor‐
tance of local variables increased. At single phylum level, the effects 
of local and climatic variables were similar (Figure 4a,d, Supporting 
Information Figure S5). For community evenness, however, changing 
taxonomic coverage did not affect the mean (Figure 4e) and pro‐
portion (Supporting Information Figure S5) of highest standardized 
estimates of climatic and local variables, although the later had 
slightly larger effects at the phylum level (Figure 4b,e). For LCBD, 
climatic variables had the highest mean (Figure 4f) and largest pro‐
portion (Supporting Information Figure S5) of highest standardized 
estimates across the taxonomic coverage, but decreasing taxonomic 
coverage greatly reduced the relative importance of climatic vari‐
ables (Figure 4c,f, Supporting Information Figure S5).

Based on the mean standardized estimates of individual en‐
vironmental variables (Figure 5a, Supporting Information Figure 
S7), the mean (Figure 5d, Supporting Information Figure S6) and 
proportion (Supporting Information Figure S8) of the highest stan‐
dardized estimates of environmental variable groups, the local 
variables became relatively more important than climatic ones 
for species richness when further downscaling the community 
to higher taxonomic resolution levels (Figure 5a,d, Supporting 
Information Figure S8). For community evenness, however, taxo‐
nomic downscaling did not affect the mean (Figure 5e) and propor‐
tion (Supporting Information Figure S8) of highest standardized 
estimates of climatic and local variables (Figure 5b,e, Supporting 
Information Figure S8). For LCBD, increasing taxonomic res‐
olutions greatly reduced the mean (Figure 5f) and proportion 
(Supporting Information Figure S8) of highest standardized esti‐
mates of climatic variables, while local variables became more im‐
portant (Figure 5c,f, Supporting Information Figure S8).

F I G U R E  2   Correlation networks for phylum biodiversity and environmental variables. Shown are three biodiversity metrics, that is, 
species richness (a), evenness (b) and local contribution to beta diversity (LCBD, c). We calculated the pairwise Spearman rank correlations 
among environmental variables (rectangles), and the biodiversity metrics of bacterial phyla (circles) and fungal phyla (triangles). Green 
and red lines represent positive and negative significant (p < 0.05) correlations, respectively, and the width of lines shows the strength of 
correlations. Phylum abbreviations are listed in Table  1
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4  | DISCUSSION

Despite the increasing attention of elevational biodiversity patterns of 
microbes in both freshwater and soil ecosystems (Bryant et al., 2008; 
Wang et al., 2017), the effects of the taxonomic scales on the micro‐
bial biodiversity patterns and the relative importance of the hierar‐
chical environmental determinants were previously largely unknown. 
These results on the elevational patterns and determinants varying 
with taxonomic coverage and taxonomic resolutions, to the best of our 
knowledge, are for the first time revealed for microbes. The elevational 
patterns in species richness and LCBD were congruent across bacterial 
phyla, but not in evenness. Taxonomic downscaling in both taxonomic 
coverage and resolution significantly changed the biodiversity patterns 
and increased the relative importance of local variables on biodiver‐
sity patterns while decreased that of climatic variables. This outcome 

highlights that the niche conservation with regard to climatic factors 
is more important for biodiversity for the whole community and the 
lower taxonomic resolution levels, whereas the effects of environmen‐
tal filtering by local variables are stronger at the higher resolution levels.

4.1 | Elevational patterns across taxonomic scales

For bacteria, we found that species richness declined with elevation 
for the whole community and nearly half of the taxa at the phylum 
to order levels. According to a recent meta-analysis, such a pattern 
is relatively typical in species richness for both freshwater and soil 
bacteria communities, with declining patterns in 36.8% and 30.0% 
of studies, respectively (Wang et al., 2017). However, at higher 
taxonomic resolution levels, such as genus level, hump‐shaped pat‐
terns were more dominant, which also led to increased complexity 

F I G U R E  3   Environmental variables explaining the biodiversity of microbial phyla and whole communities. The lower panels show the 
standardized parameter estimates, indicated by dot sizes, for the three groups of environmental variables using weighted averaging of 
parameter estimates over best‐fit models in predicting three biodiversity metrics. The numbers of best‐fit models are listed in Supporting 
Information Table S1. The biodiversity metrics are species richness, evenness and local contribution to beta diversity (LCBD). The three 
groups of explanatory variables are climatic (MJT, mean July temperature; MAP, mean annual precipitation), catchment Normalized 
Difference Vegetation Index (NDVI) and local variables (pH, TN, conductivity [SPC], K and area). The shaded dots indicate significant 
(p < 0.05) positive (blue) or negative (red) effects on biodiversity based on multimodel averaging analyses. The upper panels represent the 
mean values of relative variable importance for all phyla, which is a measure of the absolute ratio of standardized beta. Phylum abbreviations 
are listed in Table  1. The phyla are ordered according to mean species number
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and weaker diversity–elevation relationships. Various patterns that 
emerged at phylum level also support different biogeographic pat‐
terns observed across bacterial phyla in other habitats, for example, 
soils (Singh, Takahashi, & Adams, 2012). The increased complexity 
suggests that the microbial elevational patterns may vary with taxo‐
nomic scales, as also being found for macroorganisms (Peters et al., 
2016; Weiser et al., 2018). This scaling effect of taxonomic resolu‐
tions may explain the general elevational patterns of micro‐ and mac‐
roorganisms (i.e., higher plants and animals). Macroorganisms are 
usually examined at higher taxonomic level, and only approximately 
25% of patterns are declining (Rahbek, 2005). This is consistent with 
the smaller proportion of declining patterns in microorganisms at 
higher resolution taxonomic levels. We thus postulate that decreas‐
ing taxonomic resolutions may reveal less complex elevational pat‐
terns, such as monotonically declining patterns.

Weakly declining trend in evenness for the whole bacterial 
community was also found by Wang et al. (2017), whereas hump‐
shaped patterns that emerged here frequently at the phylum level 
have rarely been documented before. Such a trend may be caused 
by the detected positive relationship between species richness and 
evenness in the whole community level, while evenness patterns 
were better explained by local variables compared to species at the 
phylum level. For LCBD, significant U‐shaped patterns indicate that 
the both ends of the environmental gradient may be occupied with 

specialized species (Legendre & De Cáceres, 2013). This observation 
is consistent with the one reported for diatom community along the 
same elevational gradient (Teittinen et al., 2017). The congruence 
of these distinct microbial groups suggests that the U‐shaped pat‐
tern may be a general feature of the microbial beta diversity pat‐
tern across environmental gradients. However, the facts that the 
U‐shaped pattern was less evident and nonsignificant patterns were 
more common at high taxonomic resolution levels imply that the un‐
derlying drivers of LCBD may be inconsistent at higher taxonomic 
resolution levels.

The network analyses revealed that species richness and 
LCBD had strong biological associations (i.e., intercorrelations) 
among most of the bacterial phyla, whereas evenness was weaker. 
Such a result may stem from the following reasons. (a) Firstly, even 
though the driving variables across the phyla differed, the direc‐
tions of the responses of species richness and LCBD were mostly 
consistent across the phyla. This may be caused by the negative 
effect of temperature, that is, elevation, acting as strong envi‐
ronmental gradient for the lower resolution taxa. Such a strong 
effect caused the similar responses to temperature across differ‐
ent clades. For evenness, the responses towards environmental 
drivers were inconsistent and resulted in weak intercorrelations 
among the phyla. (b) Second, the niche conservatism across the 
phyla that follow the main environmental gradients is likely to be 

F I G U R E  4   Relative importance of environmental variables across taxonomic coverage. Individual environmental variables (a–c) and 
three environmental variable groups (d–f) are considered for three bacterial biodiversity metrics: species richness (a, d), evenness (b, e) and 
local contribution to beta diversity (LCBD) (c, f). The three environmental variable groups are climatic, catchment and local variables. We 
calculated the standardized beta values measured with weighted averaging of parameter estimates over best-fit models for biodiversity and 
environmental variables. The upper row (a–c) shows the relationships between taxonomic coverage and the variation in mean standardized 
beta values for each phylum combination scenario. The lower row (d–f) shows the relationships between taxonomic coverage and the 
means of highest absolute standardized beta weights for all possible phylum combinations regarding the three groups of environmental 
variables. These mean standardized beta values (a–c) and the means of the highest absolute standardized beta weights (d–f) indicate the 
relative importance of examined variables in explaining the observed biodiversity. The error bars indicated the SDs for all possible taxa 
combinations. The box plots for individual environmental variables (a–c) are shown in Supporting Information Figure S4
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more important in determining the occurrence (and thus richness 
at sites) of species than their abundance. This is because a species’ 
occurrence is temporally more stable than its abundance, whereas 
a species’ abundance, especially that for microbes, is easily af‐
fected by daily or seasonal environmental variations due to their 
fast growth rates and short life cycles. (c) Third, biotic interactions 
such as facilitation or competition could increase or decrease di‐
versity through changing utilization of limiting resources and re‐
source partitioning (Tilman et al., 2001). This change in overall 
utilization of resources may lead to the diversity change of the 
whole bacteria community that could promote the diversity con‐
gruency across different phyla (Cardinale, Palmer, & Collins, 2002; 
Hibbing, Fuqua, Parsek, & Peterson, 2010). However, it remains 
largely unknown for microbial communities in how biotic interac‐
tions affect at the phylum level and how such interactions main‐
tain the diversity.

4.2 | Environmental determinants for 
elevational patterns

We found that temperature was the strongest climatic factor posi‐
tively affecting overall bacterial species richness, which is congruent 

with previous studies (Wang, Pan, Soininen, Heino, & Shen, 2016; 
Zhou et al., 2016). The great importance of temperature suggests di‐
rect or indirect temperature‐dependent mechanisms, such as a posi‐
tive effect on metabolisms (Brown, Gillooly, Allen, Savage, & West, 
2004; Fuhrman et al., 2008; Wang et al., 2016), productivity (Wang 
et al., 2016; Wang, Brown, Tang, & Fang, 2009), ecological interac‐
tions (Chen, Landry, Huang, & Liu, 2012) and speciation rate (Allen 
& Gillooly, 2006), for generating and maintaining the aquatic bacte‐
rial diversity. Since the climate of the subarctic mountain region is 
characterized by a relatively warm but short growing season, high 
growing season temperatures at low elevations may stimulate re‐
source exploitation rate and growth rate that facilitate the high bac‐
teria diversity. It should be noted, however, that temperature may 
also affect microbial communities indirectly through unmeasured 
local factors or biogeographical processes that are associated with 
elevation, such as the concentration of dissolved organic carbon 
(Karlsson, Jonsson, & Jansson, 2001; Rofner et al., 2017; Wang et 
al., 2011, 2017) or dispersal effects (Szekely & Langenheder, 2017). 
Nevertheless, the dominant roles of temperature at broad taxo‐
nomic scales (Figure 5a) are also consistent with the finding among 
macroorganisms showing that temperature is an important driver 
in the multitaxa community (Peters et al., 2016). Furthermore, our 

F I G U R E  5   Relative importance of environmental variables across taxonomic resolution. Individual environmental variables (a–c) and 
three environmental variable groups are considered for three bacterial biodiversity metrics: species richness (a, d), evenness (b, e) and 
local contribution to beta diversity (LCBD; c, f). The three environmental variable groups are climatic, catchment and local variables. We 
calculated the standardized beta values measured with weighted averaging of parameter estimates over best-fit models for biodiversity 
and environmental variables. The upper row (a–c) shows the relationships between taxonomic resolution levels and the variation in mean 
standardized beta values for each phylum combination scenario. The lower row (d–f) shows the relationships between taxonomic resolution 
levels and the means of the highest absolute standardized beta weights for all individual taxa across taxonomic resolution levels regarding 
the three groups of environmental variables. These mean standardized beta values (a–c) and the means of the highest absolute standardized 
beta weights (d–f) indicate the relative importance of examined variables in explaining the observed biodiversity. For better visualization, 
the SDs were shown for the highest absolute standardized beta weights (d–f). The taxonomic resolution levels domain, phylum, class, 
order, family and genus are shortened as D, P, C, O, F and G, respectively. The box plots for individual environmental variables (a–c) and 
environmental variable groups (D‐F) are shown in Supporting Information Figures S6 and S7, respectively
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findings of a strong positive relationship between temperature and 
community uniqueness (LCBD) strengthen the notion of the impor‐
tance of the climatic variables. Although a recent study found that 
LCBD was more affected by local environmental filtering associated 
with anthropogenic influences (Pajunen, Luoto, & Soininen, 2017), 
our data set suggests that climatic variables play a more important 
role in pristine freshwater environment. It is probable that harsh and 
unproductive conditions harbour more unique species composition 
in high elevations in the study area, but the underlying mechanisms 
promoting the high uniqueness in low elevations remain uncertain.

Local variables, such as pH, K and conductivity, were also im‐
portant in explaining bacterial species richness and evenness. The 
importance of pH in determining bacterial community diversity is 
also observed in other studies of freshwater and soil bacteria (Fierer 
& Jackson, 2006; Shen et al., 2013; Wang et al., 2017). However, 
our results revealed that such pH effects are more prominent at 
higher resolution taxa. The effect of pH on species richness and 
LCBD suggested that more acidic ponds may impose stronger en‐
vironmental filtering for higher resolution taxa, which harbour low 
species richness but unique composition. It was not surprising that 
K had significant effects on species richness and evenness, since 
K strongly correlates with Ca, Mg and conductivity and may in‐
dicate the integrated effects of weathering and watershed pro‐
cesses (Soranno et al., 1999). Although some local variables were 
less important in explaining the biodiversity of the whole bacterial 
community, they may be essential for the biodiversity of some sin‐
gle taxa. For instance, TN was the strongest factor for the phyla 
Alphaproteobacteria, Deltaproteobacteria and Gemmatimonadete, 
which may indicate specific physicochemical preference of these 
taxa.

Interestingly, narrowing down the taxonomic coverage and res‐
olution reduced the relative importance of climatic variables and 
increased the importance of local variables. This effect may be 
explained by the following reasons. First, energy‐related variables 
(e.g., temperature) modulate diversity through controlling popu‐
lation abundance and the stochastic extinction rates (Cardinale, 
Hillebrand, Harpole, Gross, & Ptacnik, 2009). More broadly defined 
taxa may be more likely to undergo zero-sum dynamics over such 
energy constraint (Hurlbert & Stegen, 2014). That is, increase in 
the abundance of one taxon would reduce that of another taxon. 
Thus, energy‐related factors were more evident at the broad scale 
of taxonomic community while did not influence much on higher 
resolution individual taxa. Second, the increasing effects of local 
variables with taxonomic downscaling may be best explained by the 
niche conservatism among the different bacterial taxa, that is, dif‐
ferent bacterial taxa are conserved in their optimal ecological niche 
(Philippot et al., 2009). Since different clades tend to retain their 
own ecological niche space and ecological traits, it is likely that spe‐
cies richness may be phylogenetically constrained by certain local 
variables that are associated with species physiological tolerance. 
For instance, pH and TN strongly constrained the species richness 
of some phyla in our studied ponds. However, the whole commu‐
nity levels encompass a wider portfolio of niches (e.g., pH optima, 

N limiting) such that environmental filtering of local variables con‐
straining particular phyla will not necessarily govern the richness 
patterns of the whole community. Third, the increased relative im‐
portance of local variables when downscaling to higher taxonomic 
resolutions may suggest that the potential niche conservatism with 
respect to local variables may be phylogenetically shallower, and 
large‐scale climatic variables seem to be more dominant at lower 
taxonomic resolutions. These findings are in line with the different 
phylogenetic niche depths of ecological traits observed in micro‐
organisms (Martiny et al., 2015). For instance, the dominant role 
of temperature at broad taxonomic resolution levels clearly indi‐
cates that the niche conservatism of temperature preference is 
phylogenetically deeper than for local variables such as pH for the 
pond bacteria. However, this finding is different from the shallow 
phylogenetic depth for temperature preference for Cyanobacteria, 
Actinobacteria and Escherichia coli. (Martiny et al., 2015).

Our findings provide direct empirical evidence to support the con‐
cept that more taxonomically inclusive clades have stronger effects 
on species richness–temperature or richness–energy relationships 
(Hurlbert & Stegen, 2014). A similar association has been reported in 
an elevational study on plants and animals (Peters et al., 2016). We also 
found evidence for the similar downscaling effects on LCBD, with de‐
creasing effects of climatic variables towards the phylum level, although 
LCBD patterns were probably affected by climatic variables rather than 
catchment and local variables. In evenness, however, local variables 
tended to be more important than the other variables regardless of tax‐
onomic coverage, which is in line with a study that suggests that bac‐
terial evenness is best explained by local variables (Wang et al., 2017).

4.3 | Elevational patterns in fungal biodiversity

Compared to bacteria, the biodiversity of freshwater fungi has been 
less explored. In terrestrial habitats, the fungal diversity patterns 
have been examined at the whole community level (Gai et al., 2011; 
Pellissier et al., 2014; Tedersoo et al., 2014; Yang et al., 2016) and 
also at the phylum level (Looby, Maltz, & Treseder, 2016). Although 
there were no significant elevational patterns in biodiversity of 
the freshwater fungi at the community level, the significant hump‐
shaped patterns were observed for two fungal phyla. The significant 
effect of precipitation on these two fungal phyla is consistent with 
a global‐scale study in which fungi are most strongly related to pre‐
cipitation and local soil variables (Tedersoo et al., 2014). The weak 
support of pH in explaining whole fungal community suggests that 
fungi are less sensitive to pH changes than bacteria. Interestingly, 
fungal species richness scaled positively with pond area, which is 
consistent with the species–area relationship and suggests that 
larger pond may serve as a larger colonization pool for fungi. In ad‐
dition, although environmental drivers changed according to taxo‐
nomic scales in bacteria, the taxa number of fungal samples was too 
low to conduct the similar analyses of taxonomic coverage. In the 
future, with more intense sampling, the taxonomic scaling effect 
for fungi could provide a better understanding of their biodiversity 
patterns and determinants.
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5  | CONCLUSIONS

Our study revealed that taxonomic downscaling provides new in‐
sights into the elevational patterns and their underlying drivers. 
Although the elevational patterns in biodiversity at finer taxonomic 
scales were variable and were not necessarily congruent with the bi‐
odiversity patterns for the whole microbial communities, we clearly 
showed that there was a congruence of elevational patterns in spe‐
cies richness and LCBD at bacterial phylum level, but not in even‐
ness. Further, elevational patterns in bacterial species richness and 
evenness showed increasing complexity towards higher taxonomic 
resolution levels. These findings reveal that the niche conserva‐
tisms of microbial taxa could happen even at the lower taxonomic 
resolution levels by sharing general ecological strategies and traits 
for their occurrence in terms of the broad‐scale environmental vari‐
ables, such as climatic factors. This is further supported by compar‐
ing different spatial scales of drivers, which showed that taxonomic 
downscaling increased the relative importance of local variables for 
biodiversity but decreased the importance of climatic variables. Our 
results collectively emphasize the ecological coherence across mi‐
crobial taxonomic scales and provide novel evidence of the impor‐
tance in considering different biodiversity facets across taxonomic 
scales and hierarchical drivers.
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